Control Systems |

Proportional, Integral, Derivative Controllers

Colin Jones

Laboratoire d'Automatique

This Week: PID Control

PID - Proportional, Integral, Derivative Control

T Tazy )

de

= Most common controller

= Used in billions of devices

1t
ﬁ/o e(r)dr

s w(t) " Very simple and effective

+T+

Goal: Drive error to zero and keep it there

u(t) = Kpe(t)

u(t) = KD

o u(t) = /Ot Kre(r)dr

de(t)
dt

Zero if and only if error is zero and
not changing

Recall: The Control Loop

w(t)
._elt) u(t) ,L
r(t) —(O——> Controller O System T» y(t)
O ()
= Reference 7(t) = Input disturbance w(t)
= Error e(t) = Measurement noise v(t)
= Input u(t) = Ouput y(t)

Goal: Make y(t) = r(t), no matter what w(t), or v(t) are

Example



DC Motor Speed Control Open-Loop Block Diagram

i(t)
Ko
+ R K
- i(t T(t - 1
U(t)J 1 ( )> K (®) 4 = —» / > w(t)
R - JJa(o)
Electrical dynamics:*
M, (1)
u(t) = vems + Ri(t) = KPw(t) + Ri(t)
Voltage Back-EMF Resistance On the board: Slmpllfy
Mechanical dynamics:
(1) = K®i(t) = Jw(t)+ fw() + M.(t)
~~ ——
Torque Inertia Viscous friction Parasitic torque
! Assuming that the motor inductance is negligible
4 5
Open-Loop Block Diagram Open-loop System Response
M, (s) 0.5+
l — w(t) in response to step in u(t)
S ——(t) in response to step in Mr(t)
Ko
f— 07
(s) Jé)—» o (s
—>
4 sIR + Rf + (K®)2 v
Ko —05 T T T T 1
s) = M 0 1 2 3 4 5
“8) = TR Rf + (K99 (“(g) (S’)) Time (s)
Response to a step u(s) =1/s Response to a step M, (s) = 1/s
oty = 52 (1 - 6—7’*”}55‘“2t) oty = - (1 _ e——’*”}f;‘")?t)

LComment on why we can drop gain on disturbance.



Proportional Control

Example: Motor Control

w(t)

Recall:

a0+ 5 (14 E Va0 = 52 (w0 - 200)

Output: w(t) speed of motor Input: u(t) electrical current
J rotational inertia, R electrical resistance, f viscous friction, ® inductance

Proportional Control

e(t) —» K, — u(t) E(s) — I — Ul(s)

Proportional Control

u(t) = Kpe(t) = Kp(y(t) —r(t))

Set the system input to be proportional to the error

Intuition: Controller responds strongly to a large error and weakly to a small one

Only design choice: Kp
What impact does Kp have on the system behaviour?

Example: Block Diagram

R
T K& M,
1 We — W J + Motor and
we —(O——+ Controller O > w

I* load

System equation:

a0+ 5 (14 E Va0 = 52 (w0 - o 000)

JR Ko
Controller equation:
u(t) = Kp(we(t) — w(t))
Intuition:

= Speed slower than desired (w < w.): Increase current

= Speed faster than desired (w > w.): Decrease current



Proportional Motor Speed Control Recall: Behaviour of First-Order Systems

With the controller in place, the system equation is:? .
P y 9 B(t) 4+ Tz (t) = yu(t)

a0+ 5 1+ B8 Yt = TF Kotolt) — o)

R - i?; 1. Take the Laplace transform:
«@ /
W(t) + aw(t) = BK(we(t) — w(t)) sX(s) +7X(s) =7V(s)

X(s)(s+7)=7V(s)
Re-arranging gives:
2. Suppose the v(t) = v, for t > 0 for some constant v, then V (s) = <.
w(t) + (o + BEp)w(t) = BEpwe(t)
. X(s) = S ——
This is a standard first-order system. s(s+7)

3. Take the inverse transform to compute the time-domain response

a(t) = %vc.ffl {1 - #} = Lu(1-e)

S T+Ss T

2Note that we've assumed that the disturbance is zero here M,.(t) = 0.

11 12
Response of Motor Under Proportional Control Response of Motor Under Proportional Control
BKp  _ —(a+BKp)t 1.5
)= —"—"L &.(1- P
w(t) = L1 - )
] e W —® — P — 1 =
Take the constantstobe: J=f=K=d=R=1. Kp=11—-03
1 (K®)? K&
= — _— =2 = — =1 | -
‘=7 <f TR P =Tr 0.5
=
Suppose at time ¢ = 0 a speed change is requested = @. = 1. 3 0 /
= i
The time response is now: i
wv
Kpi. —(24+Kp)t 0.5} -
— 1_ P ) 0.5
wlt) = 5o (1-e
How should we choose Kp? 1k N
—-1.5 | | | | |
0 0.5 1 1.5 2 2.5 3

Time (s)

13 14



Response of Motor Under Proportional Control

Speed w(t)

Response of Motor Under Proportional Control

Speed w(t)

1.5

0.5

-0.5

—-1.5

1.5

1.5 2 2.5
Time (s)

|

/
/

Kp =10, 7 = 0.08

Kp=1 17=0.3

14

=
v
[
=
3
|
=]
w

Kp=-1,7=1

14

Response of Motor Under Proportional Control

1.5

0.5

Speed w(t)
o

-0.5

—1.5

0.5 1 1.5 2 2.5 3
Time (s)

14

Impact of Proportional Gain

= Stability

= An incorrect gain can cause the system to be unstable

= Transient response

= A larger gain will normally cause the system to react more quickly
= Larger gain — larger input. However, you do not have unlimited input authority!

= Steady-state offset

= Many systems will have a steady-state offset with only proportional control

PO (1 _ o=(+Kp)ty - _KP

a)c#wc
2+ Kp 2+ Kp

lim w(t) = lim
t—o0 t—o0

Another component needed to ensure steady-state error is zero — Integrator

15



Why Not Choose the Maximum Kp?

Kp =100, 7 = 0.01

[ | | | | | /Kp:m,T:o.os

0.8

0.6

Speed w(t)

Kp = 1 T = 03
A4 N ' -
0 _— Proportional Integral Control

0.2 [/ _
| | | | |
0 0.5 1 1.5 2

0
2.5 3

Time (s)

= Faster response requires a faster actuator
= Need more input authority (‘stronger’ actuator)
= You may just be amplifying noise (more later)

Proportional Integral (PI) Control Final Value Theorem
++

e(t) ﬁo;' u(t) E(s) T‘
T%_ fot e(T)dr j

Proportional Integral Control

U(s) How to compute the steady-state value of a signal?
Final Value Theorem

If and only if the linear time invariant system producing x(¢) is stable, then

lim z(t) = lim sX(s)
t— o0 s—0

The system must be stable!

u(t) = Kp (e(t) + Ti /0 ' e(T)dT) = Kpe(t) + Ki /0 " e(r)dn)

= If it's not, then the FVT will give you the wrong answer (it won't predict an

where K; := &2 unbounded, or oscillatory response)
7

U(s) = K, (1 + %) E(s) = <Kp + K?) B(s)

= Input is proportional to the integral of the error

= Intuition: Control input continues to grow until the error goes to zero

17 18



Final Value Theorem - Proof Sketch Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative First: Recall the Laplace transform of the derivative
r dx(t) _ / dx(t) et r dx(t) _ / dx(t)e_“dt
dt 0 dt dt 0 dt
=xz(t)e T (—9) / x(t)e *tdt Integration by parts
0 Jo
19 19
Final Value Theorem - Proof Sketch Final Value Theorem - Proof Sketch
First: Recall the Laplace transform of the derivative First: Recall the Laplace transform of the derivative
r dx(t) _ / d:r(t)e_stdt r dx(t) _ / dx(t)e_“dt
dt 0 dt dt 0 dt
=z(t)e T (73)/ x(t)e *tdt Integration by parts =z(t)e T (,5)/ z(t)e *tdt Integration by parts
0 0 0 0
= lim x(t)e " —x(0) + sL (x(t)) = lim x(t)e " —x(0) + sL (x(t))
t— 0o L—r 00
=0 x(t) is stable =0 x(t) is stable

= —z(0) + sX(s)

19 19



Final Value Theorem - Proof Sketch

Second: What happens when we take s — 07

lim/OOdL(t)

—st T o .
lim s dt = lli% z(0) 4+ sX(s)

Final Value Theorem - Proof Sketch

Second: What happens when we take s — 07

, Cda(t) _g, . ‘ ;
lg%/o 5 ¢ dt—lgr(l)—z(O)—l-aX(s)

/0 920 4t = —(0) + 1im X (s)

20 20

Final Value Theorem - Proof Sketch

Second: What happens when we take s — 07

Final Value Theorem - Proof Sketch

Second: What happens when we take s — 07

. “da(t) —g ., . . “da(t) —o ., .
lgr(l) /0 a ¢ dt = 11;1% —z(0) + sX(s) 213(1) ; 4 ¢ dt = lg% —z(0) + sX(s)

[ St = —a(0) + Jim sx (9 J = + X

tlirglc z(t) — z(0) = —z(0) + lli}l}) sX(s) tlirglo z(t) — z(0) = —z(0) + 251(1) sX(s)

lim z(t) = lim sX(s)
s—0

t— o0

There is a similar relation between the limit as ¢ goes to zero, and s goes to infinity.

20 20



Example: Motor Control

Motor Speed Control

1.5
w(t) + aw(t) = Bu(t)
Control input: u(t) = Kp(e(t) + T% Jie(r)dr) — U(s) = Kp(1+ 73 E(s) 10
1 El
(s-+ a2s) = 5, (14 712 ) (o) = 2e) : Ky — 5.7, —
! o}
BKy(Tis+1) Q
Q(s) = Q. %)
) =TT T Toa + fy)s 7 A, o) 0.5
Steady-state error in response to a step in the command: Q.(s) = <=:
tlim w(s) = hn}) sQ(s)
3 BKp(ﬂS + 1) We O L I | ;
=1 — 0 0.5 1 1.5 25 3
590 Tis® + Ti(a + BK,)s + BK, s Time (s)
e System response to a speed change command @, = 1
If the system is stable, then there is no steady-state offset « No integrator — system settles at the wrong speed
21 2
Motor Speed Control Motor Speed Control
1.5 1.5
nl K, =5T; =02 nl K, =5T; =0.2
3 z K,=5T =1
e K, =5T = O K,=5T =
o) o)
o) o)
o o
(45} (45}
0.5- 0.5-
O 1 1 1 1 1 0 1 1 1 1 1
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
Time (s)

Time (s)

System response to a speed change command w. = 1 System response to a speed change command w. = 1

22 22



Motor Speed Control

Speed w(t)

1.5

0.5

0.5 1 1.5 2 25
Time (s)

System response to a speed change command w. = 1

= Tuning the system is now more complex (more later)

Interactive Simulations

External example 1.29

1.5

Speed w(t)

PI Controller
Constant disturbance rejected

g

P-Controller
Constant disturbance
causes offset

1 2 3 4 5
Time (s)

= Disturbance impacts the system from ¢t =2tot =4
= The integrator rejects the disturbance and keep the system at the setpoint

22

e(t)

= Steady-state offset
= Integrator ensures zero offset (more details later)

O Kp > ult) E(s)

j+
7 Jy e(r)dr o

= Stability

= Transient response
= Tuning is now more complex (more details later)

24

= Adding an integrator can easily destabilize the system

Rejection of Constant Disturbances

23

Pl Control - Summary

> Ul(s)

25



Proportional Derivative Control

PD Control : An Interpretation

Consider the value of the error T; seconds into the future:

de
e(t +Ty) ~ e(t) + d—:(t)Td
15
e(0) + %e(O)Td e(t)
1, 4
e(Tq)
0.5¢
e(0)
0
<35 0 05

Time (s)

One interpretation: Feedback on an estimate of the future error

27

Proportional Derivative (PD) Control

+

O—~

Td%(t) J

e(t)

Ky

- u(t) B(s) O K, [+ Uls)

Proportional Derivative Control

ult) = Kp (e(t) + de{(t)) = Kpe(t) + de—:(t)

where K := KpTy

U(s) = Kp(1+ Tys)E(s) = (Kp + Kqs)E(s)

= Input is proportional to the derivative of the error

= Intuition: React to fast disturbances more quickly than slow ones

26
Motor Control Example

We now want to control the position 6 of the motor:

6(t) + b (t) = Bu(t)

Take the Laplace transform:

u(t) = Kp (e(t) + ng(t))

= Kp (Hc(t) —0(t) — ng(t)> 3
(s> + as)O(s) = BKpO.(s) — BE,(1 + Tys)O(s)
ORr 0.(s)

O(s) =

2+ (a+ BKpTy)s+ BKp *

The gain Ty impacts the damping of the closed-loop system. (More later)

3Note that the derivative of 0.(t) is assumed to be zero here



Response of Closed-Loop System to PD Control

Response of Closed-Loop System to PD Control

1.5 Kp=20,T4=0 1.5 Kp=20,T,=0
Kp=120,Ty=0.1
—_~~ 17 —_~ 17 \7&
I I
C C
S k)
D 7
(@] (@]
o [a
0.5 0.5¢
0 1 1 1 0 1 1 1
0 1 2 3 0 1 2 5 6
Time (s) Time (s)

Response of Closed-Loop System to PD Control

Position 6(t)

1.5

—_

o
3l

Kp=120,T4 =0
Kp =20,T4=0.1

Kp=20,Ty=1

29

de

TisE(s) =

T,
~Ms+1

29

Implementing Derivative Action

= Not a proper expression, and cannot be implemented in a circuit

= Digital approximation: u(

Error signal

29

e(t)—e(t—A
) ~ elDzelt=a)

derdt (t)

-05
-1
15

-2

Derivative

4 6
Time (s)

30



Implementing Derivative Action

de
T .
gy ()

TasE(s) =

Td S

T,
s+l

E(s)

= Not a proper expression, and cannot be implemented in a circuit

= Digital approximation: u(t) ~

Sampled error signal

0 2 4 6 8 10
Time (s)

e(t)—e(t—A)
A

deldt (t)

Approximate Derivative

05
o\/
-05

4 6
Time (s)

Implementing Derivative Action

de
a

Ta

TysE

(s)

T,
~ %E(s)
Vst

= Not a proper expression, and cannot be implemented in a circuit

= Digital approximation: u(t) ~

Sampled error signal + Noise

4 6
Time (s)

e(t)—e(t—A)
A

Filtered Derivative

15
1
0.5 -
0 \\ /
-0.5 - e
-1
-15
2 2 8 10

4 6
Time (s)

Implementing Derivative Action

de
T .
agr ()

Td S

TasE(s) =
Fs+1

= Not a proper expression, and cannot be implemented in a circuit

= Digital approximation: u(t) ~

Sampled error signal + Noise

e(t)—e(t—A)
A

Approximate Derivative

4 6
Time (s)

4 6
Time (s)

30

PD Control - Summary

+ +
e(t) O Ky [+ ult) E(s) O Ky [+ Us)
d I
Tdﬁ(t) > Tys
= Stability
= Can add extra damping to the system.
= Intuition: Acts to reduce velocity
= Transient response
= Tuning is now more complex (more details later)
= Robustness
= Operates on high-frequencies more than lower-frequencies
= Will amplify high-frequency noise acting on the system
= Derivative controllers are always combined with low-pass filters
31



Proportional Integral Derivative (PID) Control

- e
e(t) ~O- Kp | u(t) B(s) %@» U(s)
1

Ea

Proportional Integral Derivative Proportional Integral Derivative (PI1D) Control

Control
u(t) = Kp (e(t) + Td%(w + Ti /0 e<T>dT>

t
= Kpe(t) + Kd:—:(t) + K / e(r)dr
0

Or in the Laplace domain:

1
Ti S

U(s) = Kp (1+Tds+ )E(s):(Kp—i—de—i—Kié)E(s)

32
Many Equivalent Formulations Balloon Altitude Control - Closed-Loop Response

Parallel Formulation Mixed Formulation 20

Kas Tys
PI
E(s) + v Tiu(s) E(s) + L UGs) L
g Kp ><?4>5 " Kp i > /
? v
1 |

Kiz

—_
a

Altitude (m)
S

1
1 —
U(s) = Kp + Kas + Ki— U(s) = Kp <1+Td5+Tis>

Series Formulations 5
E(L)j_> Kp SLT + T + jU(S) 0 . . | ;
i ’ * + 0 2000 4000 6000 8000 10000
: § Time (sec)
1
U() = Kp (14 7= ) (14 Tas)
TiS

33



PID Control

Proportional = Sets the ‘aggressiveness’ of your system.
= Higher generally means that the system will respond more
strongly to disturbances

Integral = Added to ensure zero steady-state offset

Ziegler-Nichols Tuning

= Not necessary if your system already has ‘integral action’

= Danger: Can easily de-stabilize the system

Derivative = Increase the damping of the system - improve stability
= Can amplify high-frequency noise
= Less often used

35
Tuning: How to choose the parameters Kp, T; and 1,77 Ziegler-Nichols First Method: Stable Systems
. , u(t) y(t)
= 1,637 books on “PID Control” on Amazon System
Common approaches:
(1) Step input (2) Analyze response
Factory defaults — Very common practice! ‘ ‘ ‘ ‘ ‘ ‘
Fiddle until it works — Can be effective if not very complex (and 1T ’
stable) osl | 0.8
Model-based approaches — Good initial settings for delicate, unstable 06
systems gos :: 04
. . - L . ] =3
Automatic tuning — Effective in specific settings S04 ] 3 02
Experimental tuning — Structured, simple and effective 0
0.2 1 o2
The most common form of experimental tuning: Ziegler-Nichols 0 ‘ : ‘ ] _0‘40 5 ; 5 .
. o . . . . -1 -05 0 0.5 1 Time (sec)
Note a lot of intuition why this works... primarily based on experience Time (sec)

36 37



Ziegler-Nichols First Method: Stable Systems

Output y(t)

—

© o o 9
o v M o ®

<—Slope = a

<—— Point of maximum slope

1
o
o

~0.4f

—alL

Type | Kp T; Ty
1
P | o
PI | 22 | 33L
PD | L2 | 2L | 05L

4
Time (sec)

u(t) = Kpe(t)

u(t) =
u(t) =

e (0
G@

i e T)dT)
0

ﬁ\~5

/ (r)dr + TS ())

38

Balloon - Step Response

Tuning procedure: Turn the burner on full and measure vertical velocity.

Velocity (m/s)

60

50

40

30

20

50

100 150 200
Time (sec)

Step response

250

300

0.25

0.2]

0.15]

0.1

Derivative of step response

50 100 150 200
Time (sec)

250 300

Derivative (acceleration)

40

Example - Balloon Velocity Control

Equations of motion:

Spirit of Freedom

W+iH:@
T1
ToU + v = adT

6T = deviation of the hot-air temperature from
the equilibrium temperature where buoy-
ant force equals weight

v = vertical velocity of the balloon

0g = deviation in the burner heating rate from
the equilibrium rate

Balloon parameters:

71 =250sec T2 =25sec a=0.3m/(sec-°C)

39

Balloon - Zieger-Nichols Parameters

60
sl a=02323
40f
Q
E 30t
2
3 20
2
10f
0 g L=16
-10 L L L ! L
0 50 100 150 200 250 300
Time (sec)
Type Kp T; T
P ﬁ =0.27
Pl % =0.24 | 3.3L =53.03
PID —LZ =0.32 2L = 32.14 0.5L = 8.03

41



Balloon - Closed-Loop Reponse Zieger-Nichols Second Method - Unstable Systems

1.6 Why two methods? Can't apply a ‘step’ to an unstable system!

« Pl
1.4 PID Solution: Stabilize the system with proportional controller first, and then tune
1.2 F—Tcﬂ
? 4 S\
£ N A ®
Ye
% 0.8 P ‘tﬁ% Kpe —>  System d 1
8 d
=0¢ / U \/ |
04 ; , |
0.2f)
Type Kp T; Ty Parameters:
O 1 1 1
0 200 ~ 400 600 800 P 0.5K ¢ = Kpc: Gain at which the
Time (sec) P 0.45K,. | 0.83T. system becomes unstable
Zieger-Nichols tuning is often quite aggressive. PID 0.6Kpc 0.5T. | 0.125Tc = Te: Period of oscillation
42 43
Example - Balloon Altitude Control Example - Balloon Altitude Control
0.51
Equations of motion: 0.4
5T + 16T = 6¢ 0.3
T1 /é\
2% + 2 = adT > 02
E
z = Altitude of balloon = 0.1
<
0,
This is an unstable system. -0.1
—0.2 ‘ ‘ ‘ ‘
Spirit of Freedom 0 500 Tirrlg(()gec) 1500 2000
Kp=1x10"*

44 45



Example - Balloon Altitude Control

Altitude (m)

Balloon Altitude Control - Closed-Loop Response

Altitude (m)

10

5,

o

|
(¢)]

-10+

A

VV\/

-15

20

-
a

—_
o

500

1000 1500 2000
Time (sec)

Kp=10x10"*

45

\v’j\v\/"/‘\’/'v\\f/\/\vf\"\v’

0

2000

4000 6000 8000 10000
Time (sec)

46

Example - Balloon Altitude Control

10
Te=
5 500
E Oﬁ/\Jﬁ[\’v/\ f | ’ |
2 \/
e
2
2 -5
-10¢
15 s ; i
0 500 1000 1500 2000
Time (sec)

Kpe=6x10"4

45

Zieger-Nichols Tuning - Summary

Simple method to determine reasonable PID tuning coefficients

= Method 1: Estimate delay and time constant from step response (stable systems)

= Method 2: Estimate gain at which the system becomes unstable, and the
frequency of oscillation (unstable systems)

= Limited to unstable systems that can be stabilized with a proportional controller
Limitations

= Very simple, but also somewhat limited

= Based on information during the first portion of the step response - many systems

are fast enough for more information to be available

= Fairly aggressive - normally good idea to reduce gains

47



Alternative Tuning Methods

Choose a “Good” Set of Parameters

“Good" parameters for this Surrogate Model:

0.157 + 0.35T

K, = —20 T 22997
P Kt

0.467 4+ 0.02T

Ki=—"—"——"—
K2

Idea: These gains give the same response for all surrogate model parameters
For the control structure:

C(s) :Kp+%

Note:

= Many other parameter values possible

= Several other surrogate models proposed

(Ziegler-Nichols parameters for same model: K, = 0.9T/Kr, K; = 0.5T/K1?)

49

Idea: Use More Information

Fit a parameterized curve to the step response:

Time (sec)

K _ _t—1
P(s) = Ts H)=K(l—e T
()= e p(t) = K(1—e 1)
e — - —K
1.5
F——— A K(1-e)
14 |
I
I
0.5 |
I
I
0 i [y i i i i
5 I10 15 20 25 30
I

48

Example: Balloon Velocity Control

Equations of motion:
5T + 16T = 5¢
T1
ToU + v = adT

Compute transfer function:

1

(5—0——) 0T = dq (r2s + 1)v = adT
Ti
a a

= dq = 1
(725+1)(5+]_/7‘1) q T252+(1+7'2/’7'1)8+1/T1 ¢

Balloon parameters:

71 = 250 sec 7o = 25 sec a=0.3 m/(sec:°C)

To Matlab!

50



Model-matching

R(s) —O— K(s) e Y (s)

R(s) —| T | v(s)

= The closed-loop system is a transfer function 7 (s) parameterized by K(s)

Model-Matching via PID

= Can we choose K (s) to make the closed-loop system match a desired behaviour?

51

R(s) H?HHY@ R(s) , K(s) | —| G(s) |—— v (s)

R(s) —| T(s) |— Y () R(s) —| Tls) |— v ()

Compute 7T (s):
pute 7 (s) Y(s)  K(s)G(s)

E(s) = R(s) = Y(s) Y(s) = G(s)K(s)E(s) R(s) ~ 1+ K(s)G(s) 7
ke T
Y (s) K(s)G(s) () G(s)(1 =T(s))

R(s) 1+K(s)G(s)
We can set K (s) to give us the behaviour 7 (s).?

“There are a lot of limitations to this in general, which we will discuss later.

51 51



Matching a First-Order Response Controlling a First-Order System

Suppose we want to match the system Suppose that the system we're trying to control is

1
-1 , Y
T(s) P G(s) = P
14 A system that moves when you ‘push’ it and:
% 0.8 = Does not oscillate
> | = Stops moving after some amount of time
5 0.6
‘% 04 Compute the controller:
o T(s) 1
0.2 K(s) = > = Tmatl
G(s)(1 = T(s)) al (1 _ 1 )
O T T T T T T T . Ts+1 Tms+1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 _Tstl
Time (s) VTm$
Step response of first-order system with time-constant 7,,, = 0.1 T YTm TS
= Doesn't oscillate = Gain of one
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Controlling a First-Order System First-Order System with Integral Action

Suppose we're controlling the system:
T 1 v L
K(s)= 1+ — G(s) = - -
0= (1+3) ()= 71

A system that moves when you ‘push’ it and:

This is a PI controller!

= Does not oscillate

Kp = = Continues moving at a constant speed forever
YTm
T =1 Compute the controller:
1
K(S) _ T(S) _ Tms+1
CHO-T6) s (1- )
s(Ts+1) Tms+1

= We can choose how fast we want the closed-loop system to respond 1

= s+ 1
= Simple ‘tuning’ procedure YTm (rs+1)

This is a PD controller
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Second-Order System

Suppose we're controlling the system:

Example - Balloon Velocity Control

Equations of motion:

1
0T+ —o6T =9

C6) = T DD TR
1 2 o0 + v = adT

A system that moves when you ‘push’ it and:

6T = deviation of the hot-air temperature from

= Does not oscillate the equilibrium temperature where buoy-

= Continues moving at a constant speed forever ant force equals weight

v = vertical velocity of the balloon

Compute the controller:

K(s) = T T2 (1+ : 1 LT s)

VYTm TL+T2)s T1+T2

0g = deviation in the burner heating rate from
the equilibrium rate

This is a PID controller Balloon parameters:

Spirit of Freedom 71 =250sec T2 =25sec a=0.3m/(sec-°C)
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Example - Balloon Velocity Control Example - Balloon Velocity Control

Equations of motion:

| B KS:Tl-i-TQ(l+ 1 G s)
0T + ;15T =dq (s) YTm (11 +72)s 71+ 7
ToU 4+ v = adT
Take Laplace transform: Balloon parameters:
1 71 = 250 sec T = 25 sec a=0.3 m/(sec:°C)
0T (s (s+—) =0Q(s
(®) T () — V(s) = an Desired system parameters:

V(s)(rs+1) = aor(s)| 29 (e D)

Tm = 10
Goal: Resulting PID controller:
1 5 5
T(s) = K _ 275 1 1 6250
T + 1 ) =310 ! T o7ms T 275 °
where 7, = 10s.
Kp =092 T, =3 Ty = 2083
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Example - Balloon Velocity Control

Open-loop behaviour

@
o

Velocity

N b o
o

o

o

o

200 400 600

Time (s)

Closed-loop behaviour

Velocity

—_

©
o

800

o
o 4

200 400
Time (s)

Second Order Models

600

800

Summary - Model Matching

The key idea:

= PID controller can make up to second order system behave as desired

= Many limitations on this statement:

= Actuator limitations (speed, power, etc)
= Physical constraints - may damage system if it's moved too fast, etc

= Many, many physical systems are approximately second order

= Newton's law
= Higher-order dynamics can often be ignored
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What are ‘Good’ Models?

Second-order systems are extremely common
(e.g., mass/spring/damper + Newton's law)

B(t) + 2Cwnd(t) + wax(t) = wiu(t)

= (: Damping ratio

= wy: Natural frequency

The transfer function for this system is:
2

X(s) _ wi
U(s) =Gls) = 52 4+ 2Cwns + w3

What does the response of this system look like as a function of ¢ and w,?
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Second Order Systems

X(s) _ _ wn
U(s) Gls) = 52 + 2Cwns + w?

where we assume that w,, > 0 and ¢ > 0.

Response to a unit step input U(s) = é:

2
Wn,

O = o atwe

2
_ Wn

T 5(82 4+ 2Cwns + w2

Note that the system has no steady-state offset for all {, w,:
2
. . w’VL
21—11% sX(s) = ll—% 88(52 + 2Cwn s + w2)
2
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Case One: Overdamped

When ¢ > 1 we call the system overdamped

The system has two real, distinct poles p1 and ps
pr=wn(=C+V¢*—1)

The partial-fraction expansion is:

P2 =wa(~¢ = V(- 1)

w727, ai as 1

:s(s2+24wns+w%):s—p1+s—p2 s

X(s)
The inverse Laplace transform is:
z(t) = a1ePt + aseP?t 11

Note that both pi and p2 are negative, since ¢ > 1. Therefore both exponential terms

decay.
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Step Response

The roots of the characteristic polynomial s> + 2(w, s + w2 are:
p=wn(—CEV( 1)

Three cases depending on damping ratio (:

1. { > 1 Overdamped
2. ¢ <1 Underdamped
3. ¢( =1 Critically damped

64

Case One: Overdamped

Step Response

14 —
0.8 -
£ 06 / ]
£
< 044
021 J
0 T T T T 1
0 0.5 1 1.5 2 2.5
Larger values of ¢ have a slower response.
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Case Two: Critically Damped

Assume ¢ = 1.
One repeated pole:

pr=pa=s=wn(—CE/C—1)=w,

The partial-fraction expansion is:

w32 -1 —w 1
X(s) = n _ n 4
(s) s(s+wn)? S+ wn * (s + wn)? + s

The inverse Laplace transform is:

—wnt —wnt
—e Ut —wpte” M 41

Since w, > 0, the exponential terms will always go to zero for all w,,.

Case Three: Underdamped

Assume 0 < (<1

The poles are complex:
p=wn(—C£jV1-?)
The inverse Laplace transform from the table is*

z(t)y=1-— \/1%74267@” sin (wn\/ 1—-C2t+ 9)

where 0 = cos™ ! ¢

#Or you can derive from the frequency-shift property, and knowing the transform of the sine function.

Case Two: Critically Damped

Step Response

'1 . /
084 [/

0.6+

Amplitude

0.4+

0.2}

0 w \ \
0 1 2 3

Larger values of w,, have a faster response
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Case Three: Underdamped

z(t)=1-— #e_gw”t sin (wn\/l —Ct+ 9)

@

= The signal oscillates, but decays to one

= The frequency of oscillation is the damped frequency wg := wny/1 — (2

= The signal decays at an exponential rate of e~

69

o

t where o = Cwn
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Case Three: Underdamped

y(®

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
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(b)

Visualization: The Pole-Zero Diagram

STABLE

4

b Im ()

UNSTABLE

-

X
LHP RHP
¥ i
Re (:)

71

4

Pole location determines the behaviour of
b Im(s)

the system

= Magnitude of the real component:
decay rate

= Larger: faster decay

= Magnitude of the complex component:
frequency of oscillation

= Larger: Faster oscillation
= Magnitude of the pole: natural
frequency

I Re(s) = Angle of the pole: sin™' ¢

What are good choices for pole locations?

s

To Matlab! pzLocations

= |mpact of wy
= |mpact of o

= |Impact of ¢
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Characterization of Second Order Systems Characterization of Second Order Systems

4 ; p »
| +1% | 1%
N S S S S
1 7/ w,{i})! ,,,,,,,, 1 / w,{i})! ,,,,,,,,
09 -———— T 09 -———— 7
0.1 0.1
t, t 1, t
tS‘ [S
Peak time 7},. Time to get to the maximum value. Percent overshoot P.O..
Tp=—-— =5 P.O. := M, x 100% = 100e~¢™/V1=¢*

P /1T -2 wa

In(Mp)
e.g., constraint: T}, < 1.5 & wq > %

V/In(Mp)2+n2 =045

e.g., constraint M, < 20% < ¢ > —
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Characterization of Second Order Systems Characterization of Second Order Systems

tl) Mp l]’ Mp
! *1% ! *1%
09 ————— L \L/ 7777777777777T77 09 ————— L \L/ 7777777777777T77
0.1 0.1
1, ! 7, !
ZS tS
Settling time Ts. Time to settle to within § percent of the steady-state value. e.g., if Rise time 7). Time to get to 90% of final value from 10%
0 =2%
T, — —logd _ 4 4
Cwn Cwn

e.g., constraint: 75 <4 &0 > Ti =1
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acterization of Second Order Systems

1.4
1.24
1l
0.8
0.6
0.4
0.2
:a e s 0% 1 2 3 4 5
» T,<15
. M, < 20%
= T, <4s
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Second-Order Models: Summary
B(t) + 2wnd(t) + w2a(t) = wlu(t) géj)) —G(s) = mzc‘;ﬁ

= (: Damping ratio

= w,: Natural frequency

= Many systems can be described with such a model.
= If your system is higher order, the general behaviour can often be described by the
dominant poles (the most unstable ones - those closest to the imaginary axis)

= Common performance parameters can be set by appropriate selection of w,, and (.
How do we choose the PID weights so that we can meet specific criteria?

= Ziegler-Nichols tuning + manual adjustments (root locus)
= Model-matching

= Methods in later lectures (generally requires higher-order controllers)

7

Second-Order Models: Summary

B(t) + 20wnd(t) + wha(t) = wau(t) fféj; =Gls) = M?g:zﬁ

= (: Damping ratio

= w,: Natural frequency

= Many systems can be described with such a model.
= |If your system is higher order, the general behaviour can often be described by the
dominant poles (the most unstable ones - those closest to the imaginary axis)

= Common performance parameters can be set by appropriate selection of w,, and (.

Example
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Suppose that we have a system which takes a force, and outputs a position:

V() 21.53
T U(s)  s*+ 1.833s3 + 70.2852 + 69.44s

G(s)
Control the position of this system using a PD controller such that:

= QOver shoot is less than Mp = 40%
= Settling time T is below 10s

= Peak-time T, is below 4s

Note: The transfer function to velocity is

21.53
5% 4 1.833s2 4 70.28s + 69.44

G'(s) =

There is already an integrator here, so we're using a PD controller.
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Root-Locus Design

Our controller is:
K(s) = Kp(1+Tys)

Suppose we've chosen T,; = 0.01, and we're looking for a good K,

Our closed-loop poles are given by the roots of the characteristic equation:

B(s)D(s) + A(s)C(s) =
s* +1.8335% 4 70.285% + 69.44s + K,21.53(1 + 0.01s) := f(s)

We can plot how the four poles of the closed-loop system move in response to changes
in Kp. This is the root-locus diagram.

To Matlab! sol_rlocus.m
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Method 1: Root-Locus Design

Goal: Choose K, so that our closed-loop poles are in the right place.
Idea: Plot the poles of the closed-loop system as a function of the gain K,

v — S ke O 6 . Y(s)
The closed-loop system is:
Y (s) = G)K(s) (R(s) ¥ (s) B — o)
Equivalently:
_ A(s) _ C(s) Y(s) _ A(s)C(s)
G = B K() =55 7 R(s) ~ B(5)D(s) + A(5)C(5)
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Method 2: Pole-Placement

Can we directly place the dominant poles of this system where we want?

Step 1: Understand and Simplify the System

0.3+

0.2+

0.1+

21.53

G'(s) = — :
(5) = 5 7183352 70985 1 69.44

System is complex, but there is clearly a dominant mode

81



Method 2: Pole-Placement Target System

Can we directly place the dominant poles of this system where we want? Compute a second order system that satisfies the specified conditions:
Step 1: Understand and Simplify the System = Over shoot is less than Mp = 40%
085 - - s o = Settling time T is below 10s
’ o = Peak-time T}, is below 4s
wn = 1.53 zeta = 0.52
0.2- 14)
1.2
0.1 N
0.8
O T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 0.61
Much simpler system that captures the main properties 0.41
0.31 / 0.2
P(s)=—— =G
(5) = 25 ~G() G
Very common to neglect the ‘higher order dynamics’ 2 0 2 4 6 8
¢ ~0.52 wp, &~ 1.53
81 82
PD Control Structure PD Control Structure
v + _ E(s) P U(s) 031 V)1 v
<(s) a - P " o1 oS > Y(s) Y(s) _ 0.31K,
R(s) s24 (14 0.31K,Tq)s + 0.31K,
2
Ty [« = m Desired response
where ¢ ~ 0.52, w, ~ 1.53
Closed-loop transfer function:
Y(s) = 2 93L g (B (s) — Tusy (s)) E(s) = R(s) — Y(s) w2 2(wn — 1
= - — Ap ) = - n n —
Kp = =17.55 Ty = ———— =025
g3+l T 47 031K,

Y(s) 0.31K,
R(s) 82+ (1+0.31K,T4)s + 0.31K,

Two parameters to choose, and two parameters to set
.. we can choose any response we like!
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Pole Placement Result Pole Placement Result

1.5+ 1.5+
11 11 e e
0.5+ 0.5+
0 T T T T 1 0 T T T T 1
0 2 4 6 8 10 0 2 4 6 8 10
Closed-loop response of simplified system Real closed-loop system with controller
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Input Constraints

All real systems have input constraints

All the controllers you've seen assume that they do not

This is a problem!

Anti-Windup Consider the simple system:

100

G) =750

with a Pl controller

K(s) = Kp (1 + TZ)

with K, = 3.5 and T; = 0.01.
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Example : Impact of Constraints Example : Impact of Constraints

Output
Output

Input
o
Input
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Example : Impact of Constraints Example : Impact of Constraints

Output
Output

Input

Input
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Saturation

No matter what we do, the input will satisfy the condition called saturation:®

Umax If U(t) > Umax
w(t) = S u(t)  if ut) € [Umin, Umax)

Umin if U/(t) < Umin

: |
+ e k 7 E Uu. Upin | u

Plant o}
(4] s + : / Uppax U, Y

Copyright ©2015 Pearson Education, All Rights Reserved

5We've written the saturation here as a symmetric term. It is also possible to have asymmetric saturation.
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Example : Impact of Constraints
5
o
5
o
0 2 4 6 8 10
5 —
5
o
£
-5 I I I I ]
0 2 4 6 8 10
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Anti-Windup

Preventing the integrator from growing or ‘winding up’ is called anti-windup

Idea: Detect when saturation is active, and turn off the integrator

e O—¢

> k P
u
. |
k Upnin
1 : ' > O u
N | Unax Uu.
K

= Only impacts the system when constraints are active

= Relatively simple to tune

= Can be implemented in continuous-time (traditional reason)

PID - Summary

PID controllers are extremely useful:

= Used in the vast majority of simple systems

= Often the ‘lowest-level" of control. More complex control built on top

A great deal of good literature available on tuning commercial PID controllers

Proportional
Integral

Derivative

= Sets the ‘aggressiveness’ of your system

= Added to ensure zero steady-state offset

= Increase the damping of the system - improve stability

Impact of PID terms:

PID Gain

Percent Overshoot

Settling Time

Steady-State Error

Increasing Kp
Increasing K
Increasing Kq4

Increases
Increases
Decreases

Minimal impact
Increases
Decreases

Decreases
Zero steady-state error
No impact
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