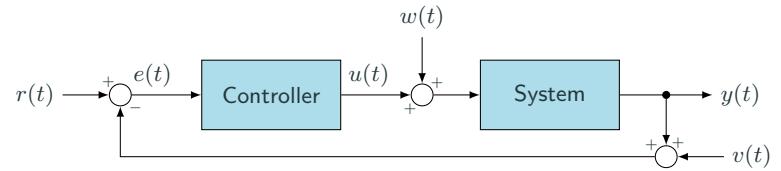


Recall: The Control Loop



Control Systems I

Proportional, Integral, Derivative Controllers

Colin Jones

Laboratoire d'Automatique

- Reference $r(t)$
- Error $e(t)$
- Input $u(t)$
- Input disturbance $w(t)$
- Measurement noise $v(t)$
- Output $y(t)$

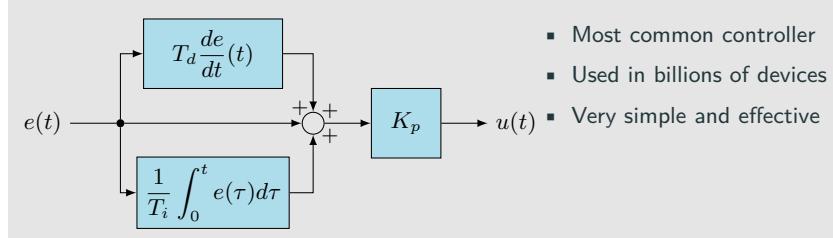
Goal: Make $y(t) = r(t)$, no matter what $w(t)$, or $v(t)$ are

1

2

This Week: PID Control

PID - Proportional, Integral, Derivative Control



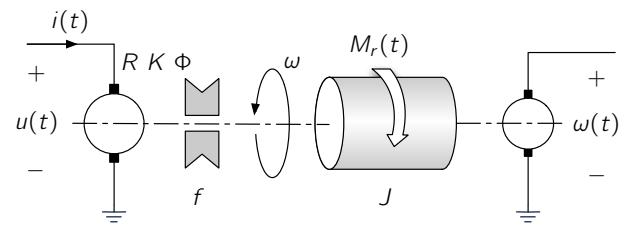
- Most common controller
- Used in billions of devices
- Very simple and effective

Example

Goal: Drive error to zero and keep it there

$$\left. \begin{array}{l} P: u(t) = K_P e(t) \\ I: u(t) = \int_0^t K_I e(\tau) d\tau \\ D: u(t) = K_D \frac{de(t)}{dt} \end{array} \right\} \text{Zero if and only if error is zero and not changing}$$

DC Motor Speed Control



Electrical dynamics:¹

$$\underbrace{u(t)}_{\text{Voltage}} = \underbrace{v_{\text{emf}}}_{\text{Back-EMF}} + \underbrace{Ri(t)}_{\text{Resistance}} = K\Phi\omega(t) + Ri(t)$$

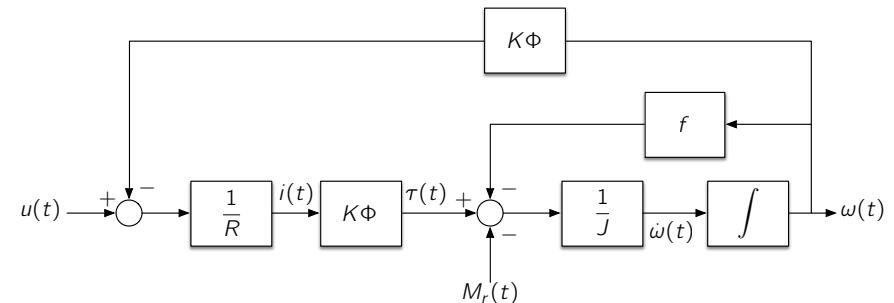
Mechanical dynamics:

$$\underbrace{\tau(i)}_{\text{Torque}} = K\Phi i(t) = \underbrace{J\dot{\omega}(t)}_{\text{Inertia}} + \underbrace{f\omega(t)}_{\text{Viscous friction}} + \underbrace{M_r(t)}_{\text{Parasitic torque}}$$

¹ Assuming that the motor inductance is negligible

4

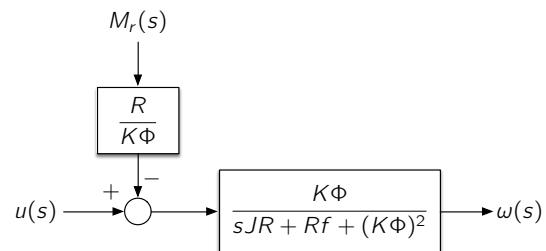
Open-Loop Block Diagram



On the board: Simplify

5

Open-Loop Block Diagram



$$\omega(s) = \frac{K\Phi}{sJR + Rf + (K\Phi)^2} \left(u(s) - \frac{R}{K\Phi} M_r(s) \right)$$

Response to a step $u(s) = 1/s$

$$\omega(t) = \frac{K\Phi}{JR} \left(1 - e^{-\frac{Rf + (K\Phi)^2}{JR} t} \right)$$

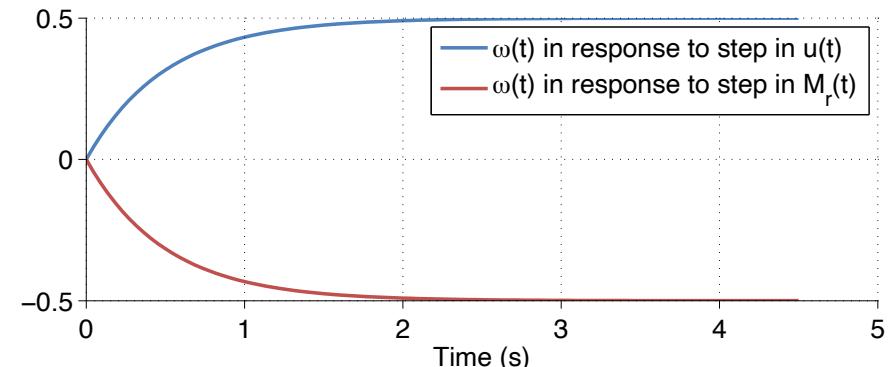
Response to a step $M_r(s) = 1/s$

$$\omega(t) = -\frac{1}{J} \left(1 - e^{-\frac{Rf + (K\Phi)^2}{JR} t} \right)$$

¹ Comment on why we can drop gain on disturbance.

6

Open-loop System Response



7

Proportional Control

Proportional Control

Proportional Control

$$u(t) = K_P e(t) = K_P (y(t) - r(t))$$

Set the system input to be **proportional** to the **error**

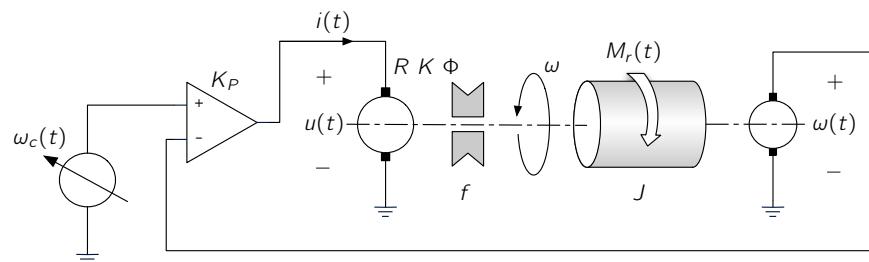
Intuition: Controller responds strongly to a large error and weakly to a small one

Only design choice: K_P

What impact does K_P have on the system behaviour?

8

Example: Motor Control



Recall:

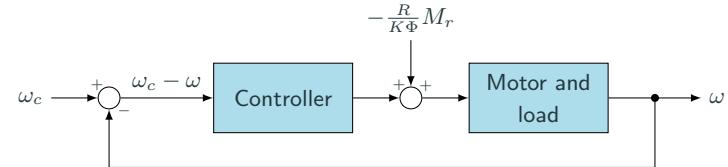
$$\dot{\omega}(t) + \frac{1}{J} \left(f + \frac{(K\Phi)^2}{R} \right) \omega(t) = \frac{K\Phi}{JR} \left(u(t) - \frac{R}{K\Phi} M_r(t) \right)$$

Output: $\omega(t)$ speed of motor

Input: $u(t)$ electrical current

J rotational inertia, R electrical resistance, f viscous friction, Φ inductance

Example: Block Diagram



System equation:

$$\dot{\omega}(t) + \frac{1}{J} \left(f + \frac{(K\Phi)^2}{R} \right) \omega(t) = \frac{K\Phi}{JR} \left(u(t) - \frac{R}{K\Phi} M_r(t) \right)$$

Controller equation:

$$u(t) = K_P (\omega_c(t) - \omega(t))$$

Intuition:

- Speed slower than desired ($\omega < \omega_c$): Increase current
- Speed faster than desired ($\omega > \omega_c$): Decrease current

Proportional Motor Speed Control

With the controller in place, the system equation is:²

$$\dot{\omega}(t) + \underbrace{\frac{1}{J} \left(f + \frac{(K\Phi)^2}{R} \right)}_{\alpha} \omega(t) = \underbrace{\frac{K\Phi}{JR} K_p}_{\beta} (\omega_c(t) - \omega(t))$$

$$\dot{\omega}(t) + \alpha \omega(t) = \beta K_p (\omega_c(t) - \omega(t))$$

Re-arranging gives:

$$\dot{\omega}(t) + (\alpha + \beta K_p) \omega(t) = \beta K_p \omega_c(t)$$

This is a standard first-order system.

Recall: Behaviour of First-Order Systems

$$\dot{x}(t) + \tau x(t) = \gamma v(t)$$

1. Take the Laplace transform:

$$sX(s) + \tau X(s) = \gamma V(s)$$

$$X(s)(s + \tau) = \gamma V(s)$$

2. Suppose the $v(t) = v_c$ for $t > 0$ for some constant v_c , then $V(s) = \frac{v_c}{s}$.

$$X(s) = \frac{\gamma}{s(s + \tau)} v_c$$

3. Take the inverse transform to compute the time-domain response

$$x(t) = \frac{\gamma}{\tau} v_c \mathcal{L}^{-1} \left\{ \frac{1}{s} - \frac{1}{\tau + s} \right\} = \frac{\gamma}{\tau} v_c (1 - e^{-\tau t})$$

²Note that we've assumed that the disturbance is zero here $M_r(t) = 0$.

11

12

Response of Motor Under Proportional Control

$$\omega(t) = \frac{\beta K_p}{\alpha + \beta K_p} \bar{\omega}_c (1 - e^{-(\alpha + \beta K_p)t})$$

Take the constants to be: $J = f = K = \Phi = R = 1$.

$$\alpha = \frac{1}{J} \left(f + \frac{(K\Phi)^2}{R} \right) = 2 \quad \beta = \frac{K\Phi}{JR} = 1$$

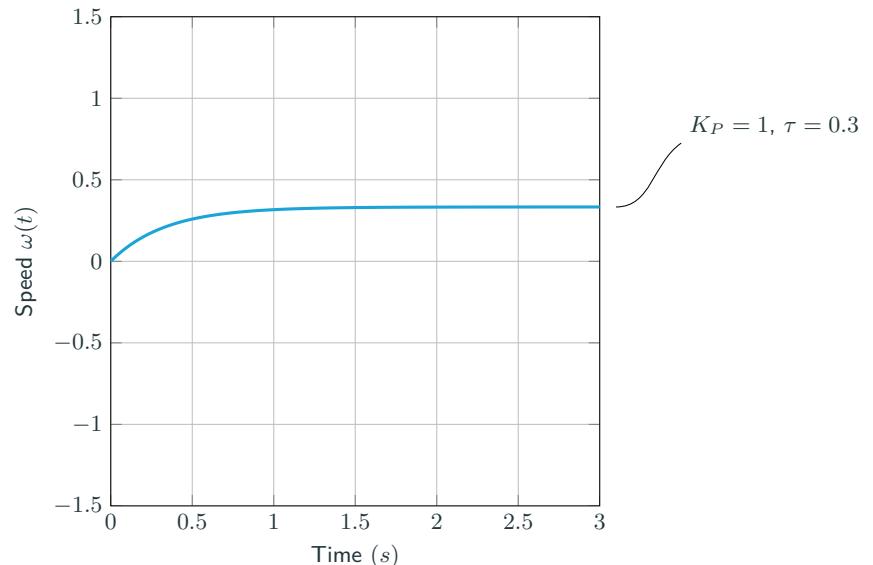
Suppose at time $t = 0$ a speed change is requested $\Rightarrow \bar{\omega}_c = 1$.

The time response is now:

$$\omega(t) = \frac{K_p \bar{\omega}_c}{2 + K_p} \left(1 - e^{-(2 + K_p)t} \right)$$

How should we choose K_p ?

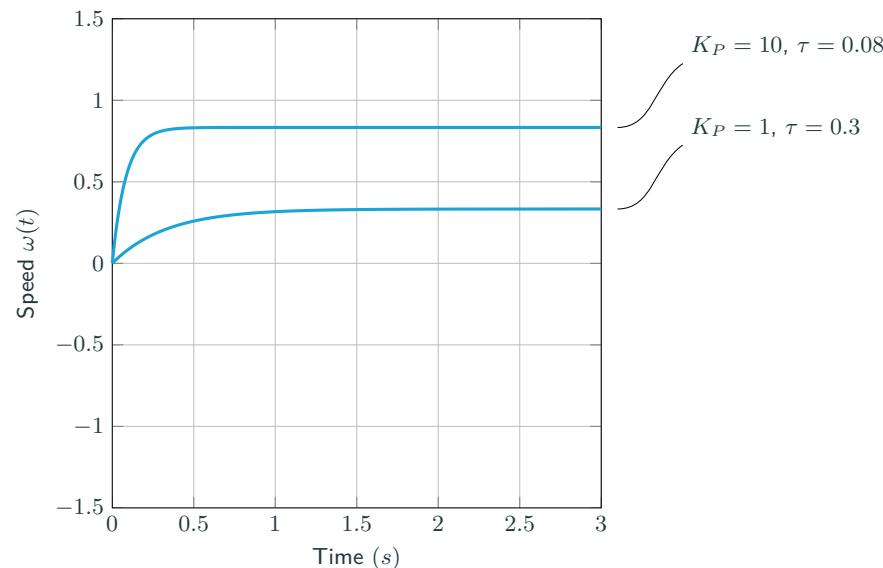
Response of Motor Under Proportional Control



13

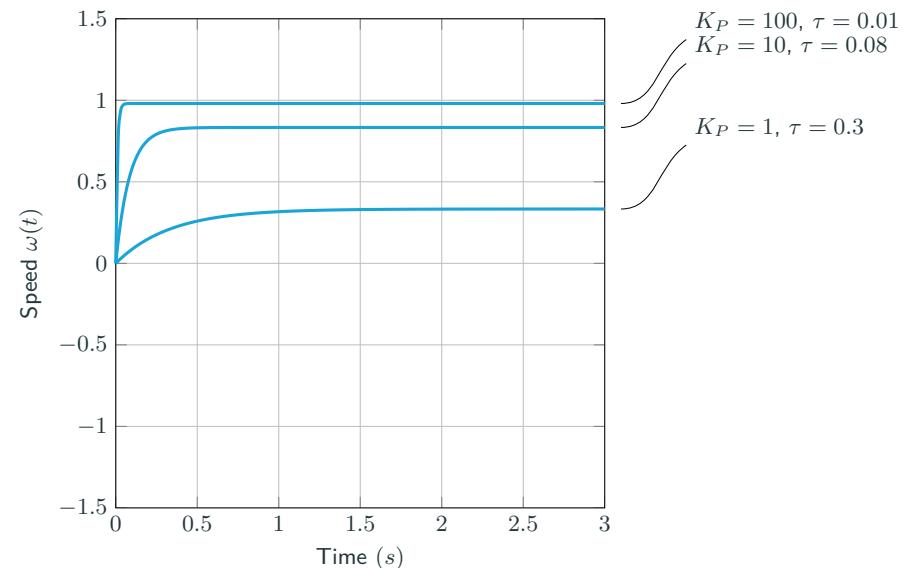
14

Response of Motor Under Proportional Control



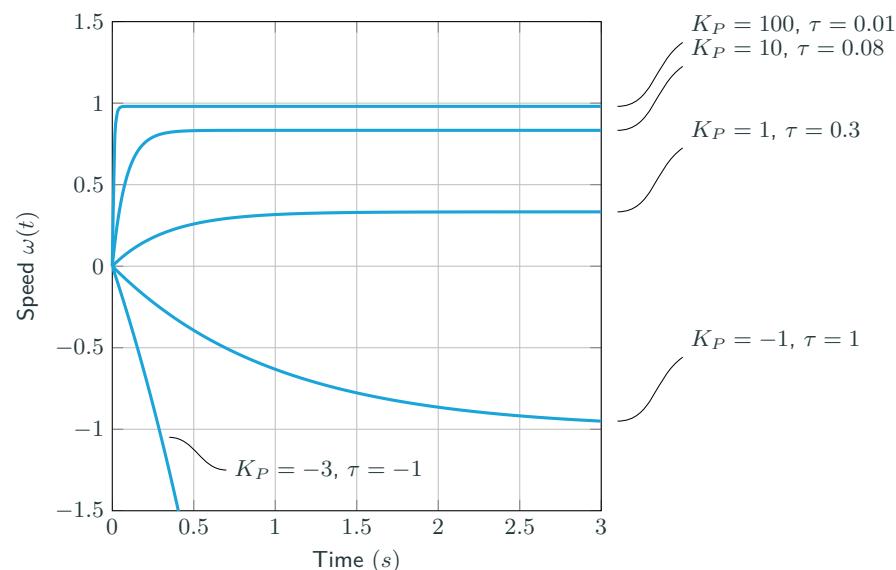
14

Response of Motor Under Proportional Control



14

Response of Motor Under Proportional Control



14

Impact of Proportional Gain

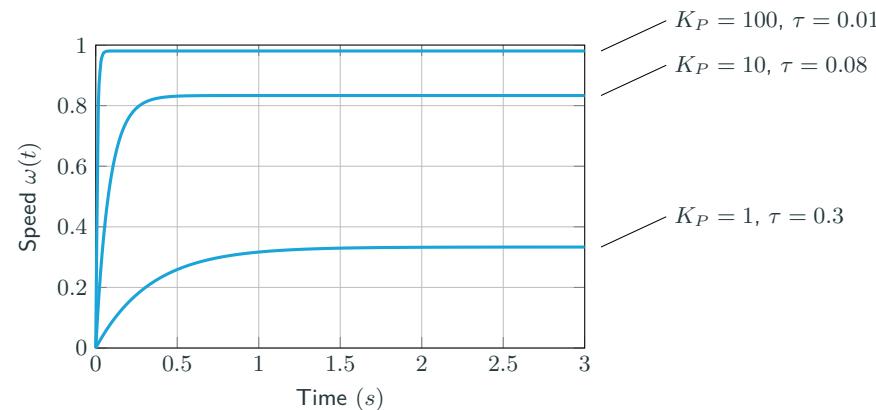
- Stability
 - An incorrect gain can cause the system to be unstable
- Transient response
 - A larger gain will normally cause the system to react more quickly
 - Larger gain → larger input. However, you do not have unlimited input authority!
- Steady-state offset
 - Many systems will have a steady-state offset with only proportional control

$$\lim_{t \rightarrow \infty} \omega(t) = \lim_{t \rightarrow \infty} \frac{K_P \bar{\omega}_c}{2 + K_P} (1 - e^{-(2+K_P)t}) = \frac{K_P}{2 + K_P} \bar{\omega}_c \neq \bar{\omega}_c$$

Another component needed to ensure steady-state error is zero → Integrator

15

Why Not Choose the Maximum K_P ?

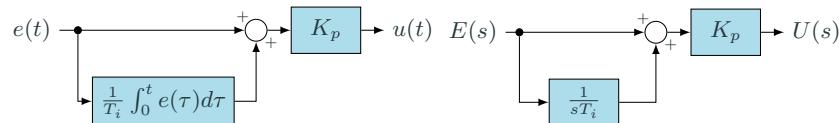


Proportional Integral Control

- Faster response requires a faster actuator
- Need more input authority ('stronger' actuator)
- You may just be amplifying noise (more later)

16

Proportional Integral (PI) Control



Proportional Integral Control

$$u(t) = K_P \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau \right) = K_P e(t) + K_i \int_0^t e(\tau) d\tau$$

where $K_i := \frac{K_P}{T_i}$

$$U(s) = K_P \left(1 + \frac{1}{T_i s} \right) E(s) = \left(K_P + \frac{K_i}{s} \right) E(s)$$

Final Value Theorem

How to compute the steady-state value of a signal?

Final Value Theorem

If and only if the linear time invariant system producing $x(t)$ is stable, then

$$\lim_{t \rightarrow \infty} x(t) = \lim_{s \rightarrow 0} sX(s)$$

The system must be stable!

- If it's not, then the FVT will give you the wrong answer (it won't predict an unbounded, or oscillatory response)

- Input is proportional to the integral of the error
- Intuition: Control input continues to grow until the error goes to zero

17

18

Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

$$\mathcal{L}\left(\frac{dx(t)}{dt}\right) = \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt$$

Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

$$\begin{aligned} \mathcal{L}\left(\frac{dx(t)}{dt}\right) &= \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt \\ &= x(t)e^{-st} \Big|_0^\infty - (-s) \int_0^\infty x(t)e^{-st} dt \quad \text{Integration by parts} \end{aligned}$$

19

19

Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

$$\begin{aligned} \mathcal{L}\left(\frac{dx(t)}{dt}\right) &= \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt \\ &= x(t)e^{-st} \Big|_0^\infty - (-s) \int_0^\infty x(t)e^{-st} dt \quad \text{Integration by parts} \\ &= \lim_{t \rightarrow \infty} \underbrace{x(t)e^{-st}}_{=0 \text{ } x(t) \text{ is stable}} - x(0) + s\mathcal{L}(x(t)) \end{aligned}$$

Final Value Theorem - Proof Sketch

First: Recall the Laplace transform of the derivative

$$\begin{aligned} \mathcal{L}\left(\frac{dx(t)}{dt}\right) &= \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt \\ &= x(t)e^{-st} \Big|_0^\infty - (-s) \int_0^\infty x(t)e^{-st} dt \quad \text{Integration by parts} \\ &= \lim_{t \rightarrow \infty} \underbrace{x(t)e^{-st}}_{=0 \text{ } x(t) \text{ is stable}} - x(0) + s\mathcal{L}(x(t)) \\ &= -x(0) + sX(s) \end{aligned}$$

19

19

Final Value Theorem - Proof Sketch

Second: What happens when we take $s \rightarrow 0$?

$$\lim_{s \rightarrow 0} \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt = \lim_{s \rightarrow 0} -x(0) + sX(s)$$

20

Final Value Theorem - Proof Sketch

Second: What happens when we take $s \rightarrow 0$?

$$\lim_{s \rightarrow 0} \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt = \lim_{s \rightarrow 0} -x(0) + sX(s)$$

$$\int_0^\infty \frac{dx(t)}{dt} dt = -x(0) + \lim_{s \rightarrow 0} sX(s)$$

20

Final Value Theorem - Proof Sketch

Second: What happens when we take $s \rightarrow 0$?

$$\lim_{s \rightarrow 0} \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt = \lim_{s \rightarrow 0} -x(0) + sX(s)$$

$$\int_0^\infty \frac{dx(t)}{dt} dt = -x(0) + \lim_{s \rightarrow 0} sX(s)$$

$$\lim_{t \rightarrow \infty} x(t) - x(0) = -x(0) + \lim_{s \rightarrow 0} sX(s)$$

20

Final Value Theorem - Proof Sketch

Second: What happens when we take $s \rightarrow 0$?

$$\lim_{s \rightarrow 0} \int_0^\infty \frac{dx(t)}{dt} e^{-st} dt = \lim_{s \rightarrow 0} -x(0) + sX(s)$$

$$\int_0^\infty \frac{dx(t)}{dt} dt = -x(0) + \lim_{s \rightarrow 0} sX(s)$$

$$\lim_{t \rightarrow \infty} x(t) - x(0) = -x(0) + \lim_{s \rightarrow 0} sX(s)$$

$$\lim_{t \rightarrow \infty} x(t) = \lim_{s \rightarrow 0} sX(s)$$

There is a similar relation between the limit as t goes to zero, and s goes to infinity.

20

Example: Motor Control

$$\dot{\omega}(t) + \alpha\omega(t) = \beta u(t)$$

Control input: $u(t) = K_P(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau) \rightarrow U(s) = K_P(1 + \frac{1}{T_i s}) E(s)$

$$(s + \alpha)\Omega(s) = \beta K_p \left(1 + \frac{1}{T_i s}\right) (\Omega_c(s) - \Omega(s))$$

$$\Omega(s) = \frac{\beta K_p (T_i s + 1)}{T_i s^2 + T_i(\alpha + \beta K_p)s + \beta K_p} \Omega_c(s)$$

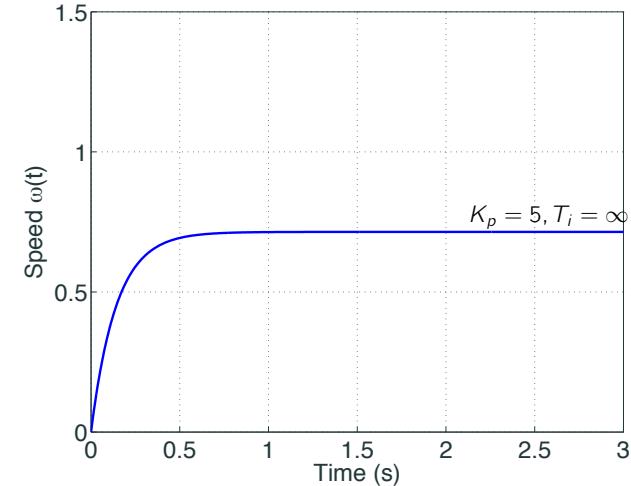
Steady-state error in response to a step in the command: $\Omega_c(s) = \frac{\bar{\omega}_c}{s}$:

$$\begin{aligned} \lim_{t \rightarrow \infty} w(s) &= \lim_{s \rightarrow 0} s\Omega(s) \\ &= \lim_{s \rightarrow 0} s \frac{\beta K_p (T_i s + 1)}{T_i s^2 + T_i(\alpha + \beta K_p)s + \beta K_p} \frac{\bar{\omega}_c}{s} \\ &= \bar{\omega}_c \end{aligned}$$

If the system is stable, then there is **no steady-state offset**

21

Motor Speed Control

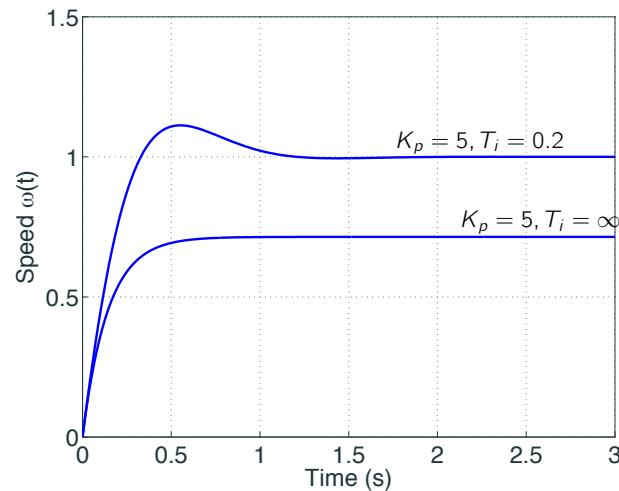


System response to a speed change command $\bar{\omega}_c = 1$

- No integrator \rightarrow system settles at the wrong speed

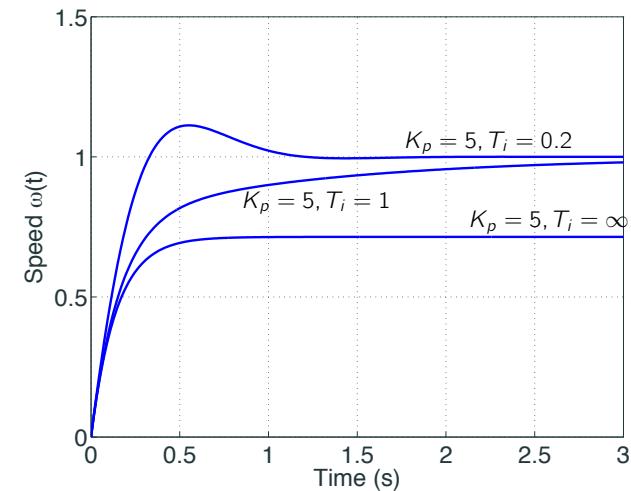
22

Motor Speed Control



System response to a speed change command $\bar{\omega}_c = 1$

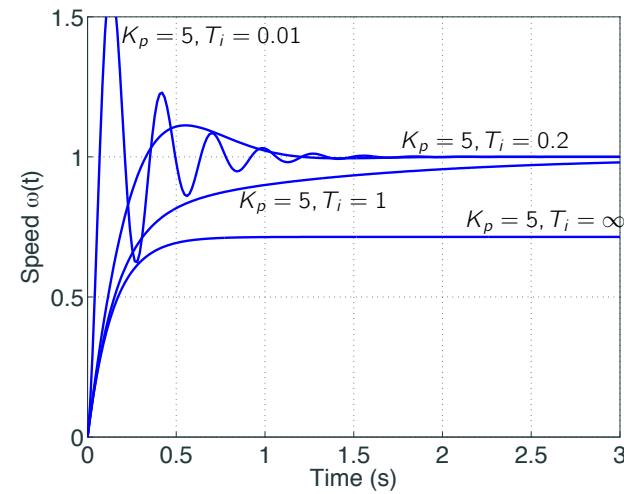
22



System response to a speed change command $\bar{\omega}_c = 1$

22

Motor Speed Control

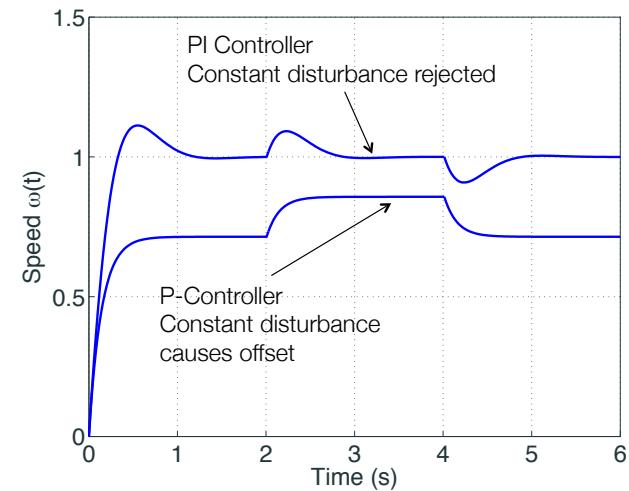


System response to a speed change command $\bar{\omega}_c = 1$

- Tuning the system is now more complex (more later)

22

Rejection of Constant Disturbances



- Disturbance impacts the system from $t = 2$ to $t = 4$
- The integrator rejects the disturbance and keep the system at the setpoint

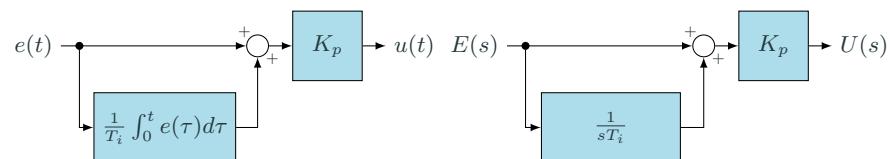
23

Interactive Simulations

External example 1.29

22

PI Control - Summary

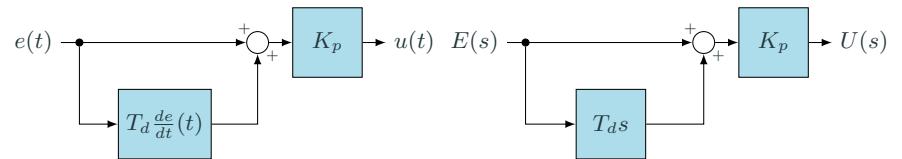


- Steady-state offset
 - Integrator ensures zero offset (more details later)
- Stability
 - Adding an integrator can easily destabilize the system
- Transient response
 - Tuning is now more complex (more details later)

24

25

Proportional Derivative (PD) Control



Proportional Derivative Control

$$u(t) = K_P \left(e(t) + T_d \frac{de}{dt}(t) \right) = K_P e(t) + K_d \frac{de}{dt}(t)$$

where $K_d := K_P T_d$

$$U(s) = K_P (1 + T_d s) E(s) = (K_P + K_d s) E(s)$$

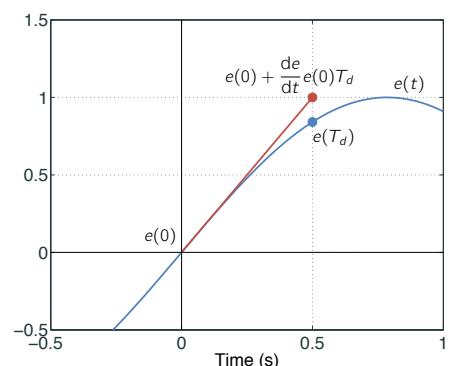
- Input is proportional to the derivative of the error
- Intuition: React to fast disturbances more quickly than slow ones

26

PD Control : An Interpretation

Consider the value of the error T_d seconds into the future:

$$e(t + T_d) \approx e(t) + \frac{de}{dt}(t) T_d$$



One interpretation: Feedback on an estimate of the future error

Motor Control Example

We now want to control the position θ of the motor:

$$\begin{aligned} \ddot{\theta}(t) + \alpha \dot{\theta}(t) &= \beta u(t) \\ u(t) &= K_P \left(e(t) + T_d \frac{de}{dt}(t) \right) \\ &= K_P \left(\theta_c(t) - \theta(t) - T_d \frac{d\theta}{dt}(t) \right)^3 \end{aligned}$$

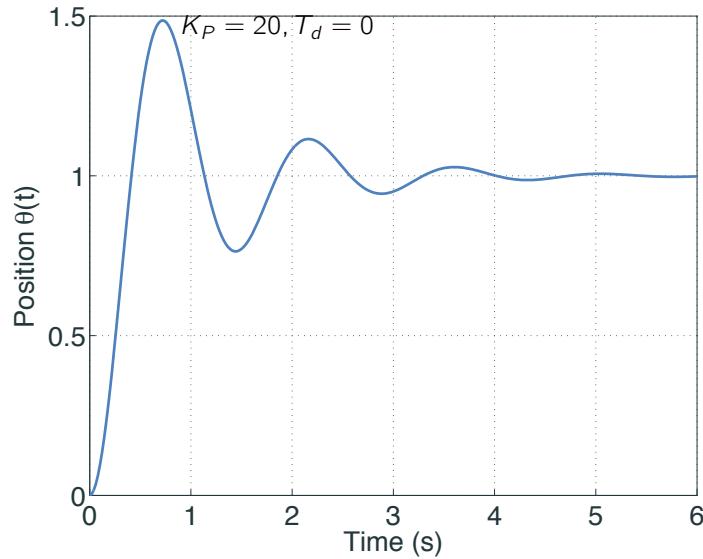
Take the Laplace transform:

$$\begin{aligned} (s^2 + \alpha s) \Theta(s) &= \beta K_P \Theta_c(s) - \beta K_P (1 + T_d s) \Theta(s) \\ \Theta(s) &= \frac{\beta K_P}{s^2 + (\alpha + \beta K_P T_d)s + \beta K_P} \Theta_c(s) \end{aligned}$$

The gain T_d impacts the **damping** of the closed-loop system. (More later)

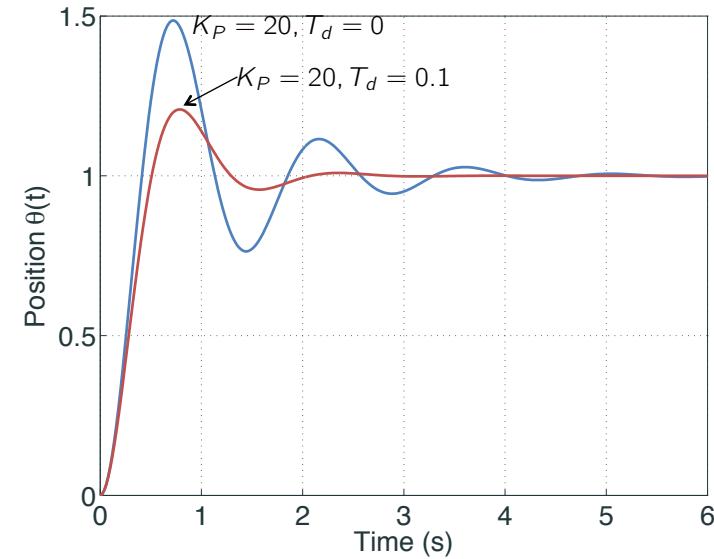
³Note that the derivative of $\theta_c(t)$ is assumed to be zero here

Response of Closed-Loop System to PD Control



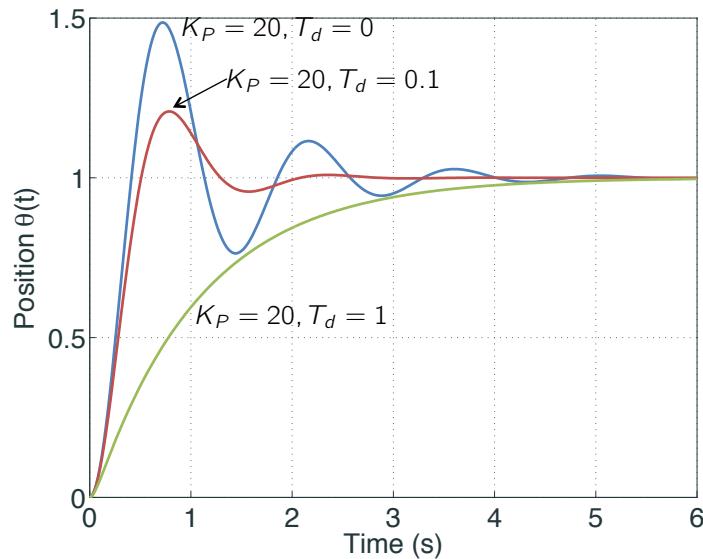
29

Response of Closed-Loop System to PD Control



29

Response of Closed-Loop System to PD Control



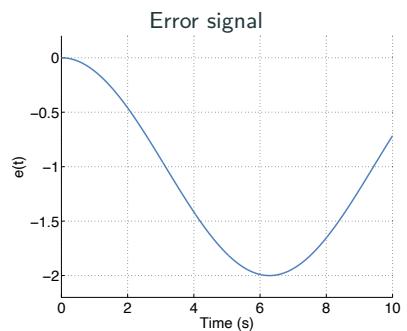
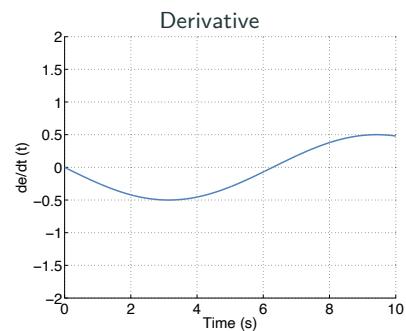
29

Implementing Derivative Action

$$T_d \frac{de}{dt}(t)$$

$$T_d s E(s) \approx \frac{T_d s}{T_d s + 1} E(s)$$

- Not a proper expression, and cannot be implemented in a circuit
- Digital approximation: $u(t) \approx \frac{e(t) - e(t - \Delta)}{\Delta}$



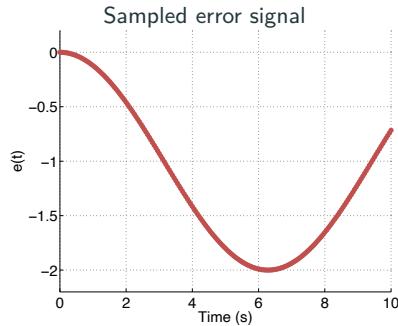
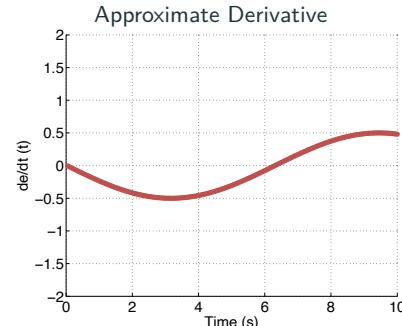
30

Implementing Derivative Action

$$T_d \frac{de}{dt}(t)$$

$$T_d s E(s) \approx \frac{T_d s}{\frac{T_d}{N} s + 1} E(s)$$

- Not a proper expression, and cannot be implemented in a circuit
- Digital approximation: $u(t) \approx \frac{e(t) - e(t - \Delta)}{\Delta}$



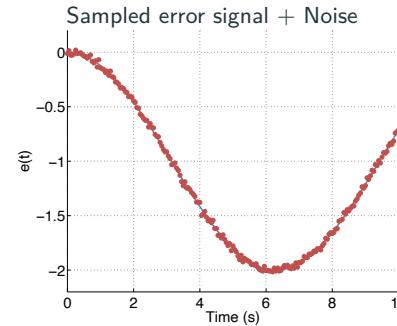
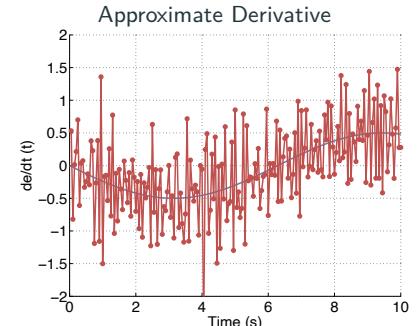
30

Implementing Derivative Action

$$T_d \frac{de}{dt}(t)$$

$$T_d s E(s) \approx \frac{T_d s}{\frac{T_d}{N} s + 1} E(s)$$

- Not a proper expression, and cannot be implemented in a circuit
- Digital approximation: $u(t) \approx \frac{e(t) - e(t - \Delta)}{\Delta}$



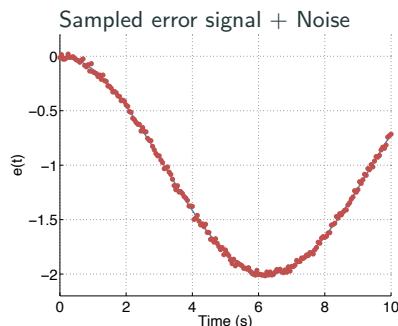
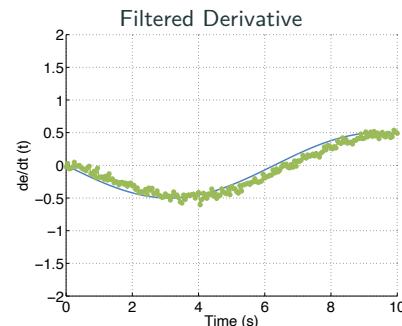
30

Implementing Derivative Action

$$T_d \frac{de}{dt}(t)$$

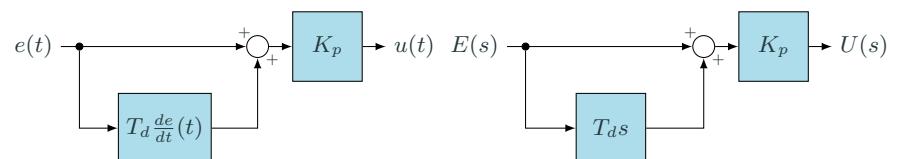
$$T_d s E(s) \approx \frac{T_d s}{\frac{T_d}{N} s + 1} E(s)$$

- Not a proper expression, and cannot be implemented in a circuit
- Digital approximation: $u(t) \approx \frac{e(t) - e(t - \Delta)}{\Delta}$



30

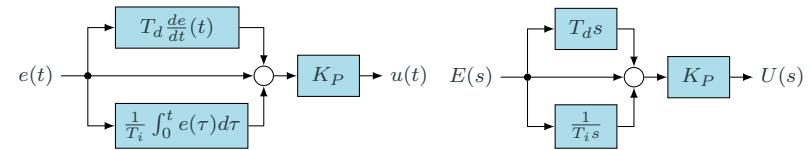
PD Control - Summary



- Stability
 - Can add extra damping to the system.
 - Intuition: Acts to reduce velocity
- Transient response
 - Tuning is now more complex (more details later)
- Robustness
 - Operates on **high-frequencies** more than lower-frequencies
 - Will amplify high-frequency noise acting on the system
 - ⇒ Derivative controllers are always combined with low-pass filters

31

Proportional Integral Derivative (PID) Control



Proportional Integral Derivative Control

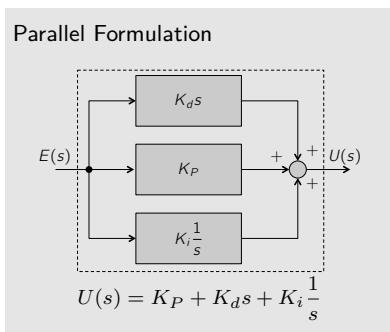
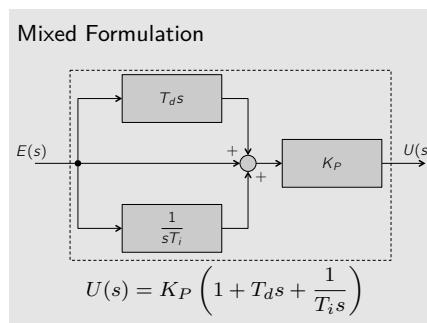
$$\begin{aligned} u(t) &= K_P \left(e(t) + T_d \frac{de}{dt}(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau \right) \\ &= K_P e(t) + K_d \frac{de}{dt}(t) + K_i \int_0^t e(\tau) d\tau \end{aligned}$$

Or in the Laplace domain:

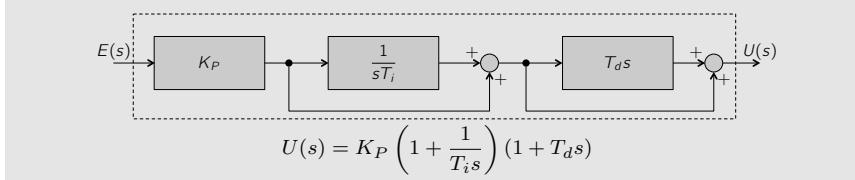
$$U(s) = K_P \left(1 + T_d s + \frac{1}{T_i s} \right) E(s) = \left(K_P + K_d s + K_i \frac{1}{s} \right) E(s)$$

32

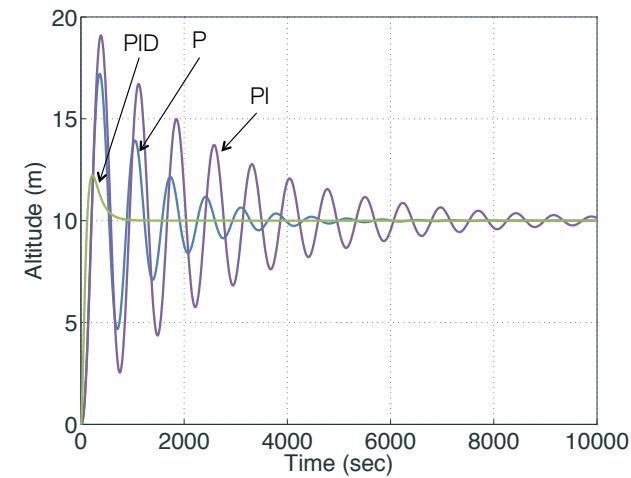
Many Equivalent Formulations



Series Formulations



Balloon Altitude Control - Closed-Loop Response



33

34

- Proportional**
 - Sets the 'aggressiveness' of your system.
 - Higher generally means that the system will respond more strongly to disturbances
- Integral**
 - Added to ensure zero steady-state offset
 - Not necessary if your system already has 'integral action'
 - Danger: Can easily de-stabilize the system
- Derivative**
 - Increase the damping of the system - improve stability
 - Can amplify high-frequency noise
 - Less often used

Ziegler-Nichols Tuning

35

Tuning: How to choose the parameters K_P , T_i and T_d ??

⇒ 1,637 books on "PID Control" on Amazon

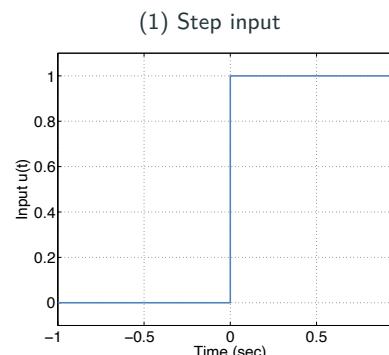
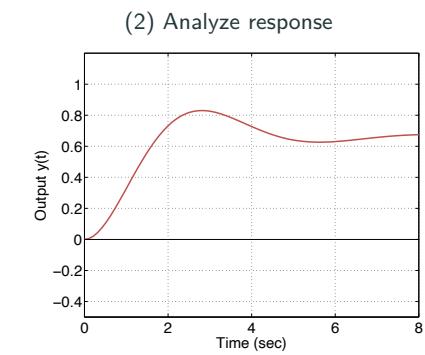
Common approaches:

Factory defaults	→	Very common practice!
Fiddle until it works	→	Can be effective if not very complex (and stable)
Model-based approaches	→	Good initial settings for delicate, unstable systems
Automatic tuning	→	Effective in specific settings
Experimental tuning	→	Structured, simple and effective

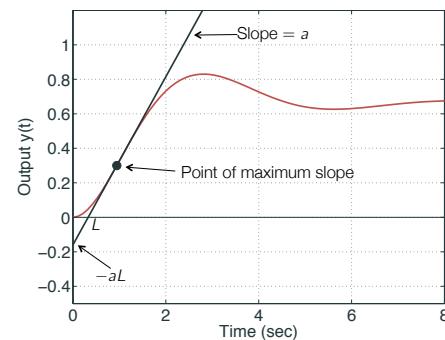
The most common form of experimental tuning: Ziegler-Nichols

Note a lot of intuition why this works... primarily based on experience

Ziegler-Nichols First Method: Stable Systems



Ziegler-Nichols First Method: Stable Systems



$$u(t) = K_P e(t)$$

$$u(t) = K_P \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau \right)$$

$$u(t) = K_P \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de}{dt}(t) \right)$$

Type	K_P	T_i	T_d
P	$\frac{1}{aL}$		
PI	$\frac{0.9}{aL}$	$3.3L$	
PID	$\frac{1.2}{aL}$	$2L$	$0.5L$

38

Example - Balloon Velocity Control

Spirit of Freedom

Equations of motion:

$$\delta \dot{T} + \frac{1}{\tau_1} \delta T = \delta q$$

$$\tau_2 \dot{v} + v = a \delta T$$

δT = deviation of the hot-air temperature from the equilibrium temperature where buoyant force equals weight

v = vertical velocity of the balloon

δq = deviation in the burner heating rate from the equilibrium rate

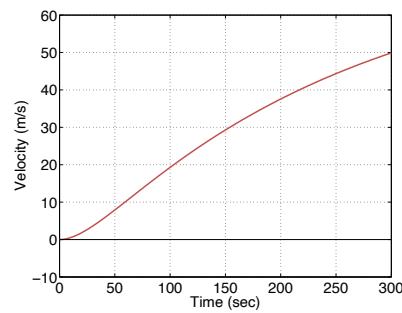
Balloon parameters:

$$\tau_1 = 250 \text{ sec} \quad \tau_2 = 25 \text{ sec} \quad a = 0.3 \text{ m}/(\text{sec} \cdot ^\circ \text{C})$$

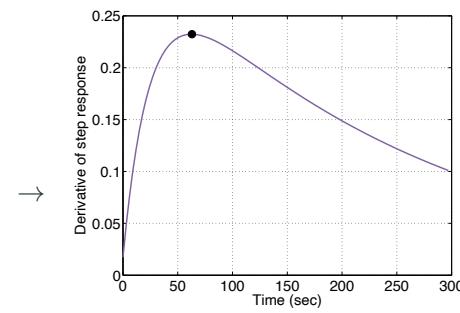
39

Balloon - Step Response

Tuning procedure: Turn the burner on full and measure vertical velocity.



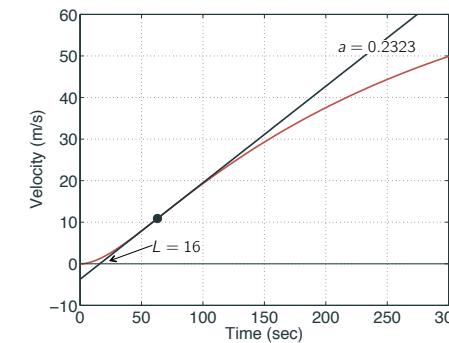
Step response



Derivative (acceleration)

40

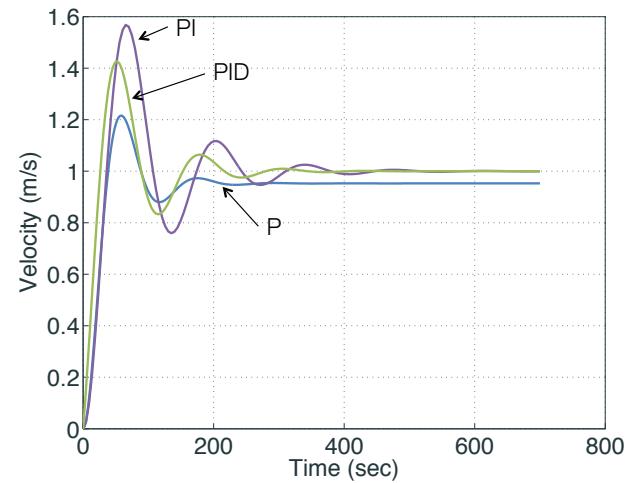
Balloon - Zieger-Nichols Parameters



Type	K_P	T_i	T_d
P	$\frac{1}{aL} = 0.27$		
PI	$\frac{0.9}{aL} = 0.24$	$3.3L = 53.03$	
PID	$\frac{1.2}{aL} = 0.32$	$2L = 32.14$	$0.5L = 8.03$

41

Balloon - Closed-Loop Response



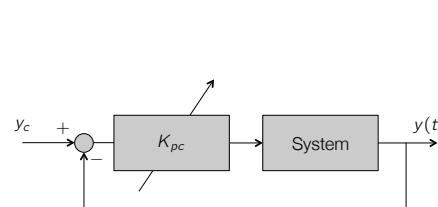
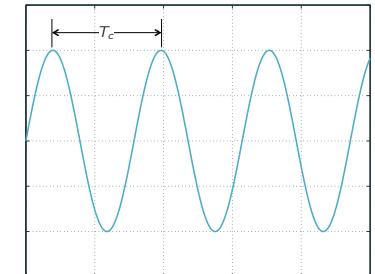
Zieger-Nichols tuning is often quite aggressive.

42

Zieger-Nichols Second Method - Unstable Systems

Why two methods? Can't apply a 'step' to an unstable system!

Solution: Stabilize the system with proportional controller first, and then tune



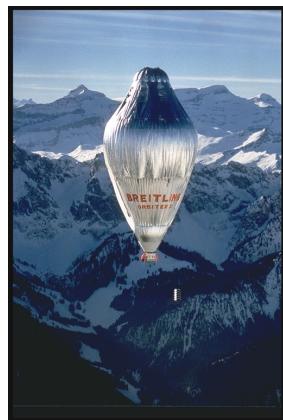
Parameters:

- K_{pc} : Gain at which the system becomes unstable
- T_c : Period of oscillation

Type	K_P	T_i	T_d
P	$0.5K_{pc}$		
PI	$0.45K_{pc}$	$0.83T_c$	
PID	$0.6K_{pc}$	$0.5T_c$	$0.125T_c$

43

Example - Balloon Altitude Control



Spirit of Freedom

Equations of motion:

$$\delta\dot{T} + \frac{1}{\tau_1}\delta T = \delta q$$

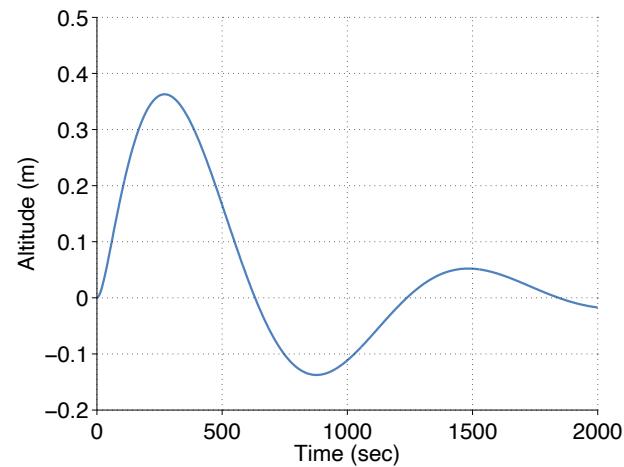
$$\tau_2\ddot{z} + \dot{z} = a\delta T$$

z = Altitude of balloon

This is an unstable system.

44

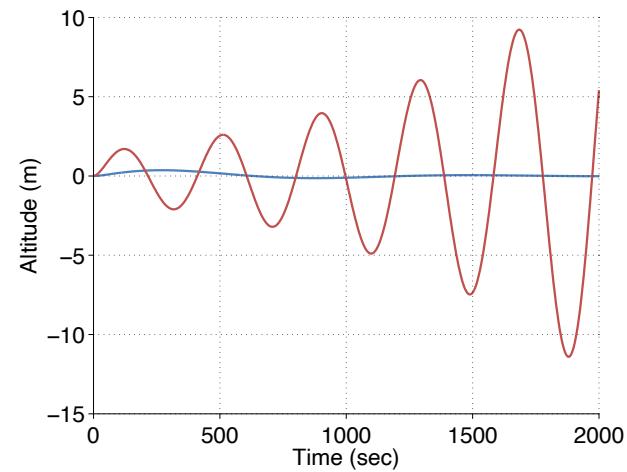
Example - Balloon Altitude Control



$$K_P = 1 \times 10^{-4}$$

45

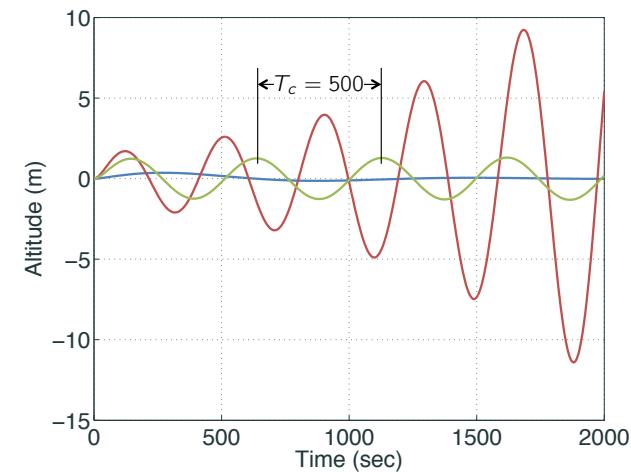
Example - Balloon Altitude Control



$$K_P = 10 \times 10^{-4}$$

45

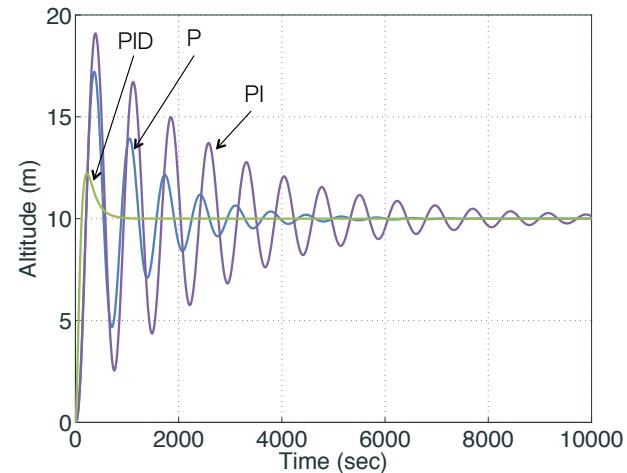
Example - Balloon Altitude Control



$$K_{PC} = 6 \times 10^{-4}$$

45

Balloon Altitude Control - Closed-Loop Response



46

Zieger-Nichols Tuning - Summary

Simple method to determine reasonable PID tuning coefficients

- Method 1: Estimate delay and time constant from step response (stable systems)
- Method 2: Estimate gain at which the system becomes unstable, and the frequency of oscillation (unstable systems)
 - Limited to unstable systems that can be stabilized with a proportional controller

Limitations

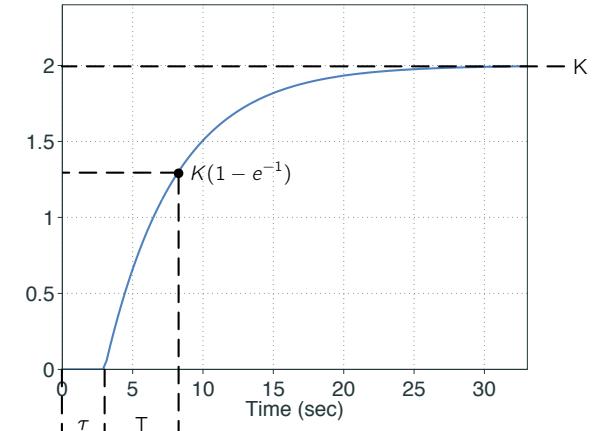
- Very simple, but also somewhat limited
- Based on information during the first portion of the step response - many systems are fast enough for more information to be available
- Fairly aggressive - normally good idea to reduce gains

47

Idea: Use More Information

Fit a parameterized curve to the step response:

$$P(s) = \frac{K}{sT+1} e^{-\tau s} \quad p(t) = K(1 - e^{-\frac{t-\tau}{T}})$$



48

Alternative Tuning Methods

Choose a “Good” Set of Parameters

“Good” parameters for this Surrogate Model:

$$K_p = \frac{0.15\tau + 0.35T}{K\tau}$$

$$K_i = \frac{0.46\tau + 0.02T}{K\tau^2}$$

Idea: These gains give the same response for all surrogate model parameters

For the control structure:

$$C(s) = K_p + \frac{K_i}{s}$$

Note:

- Many other parameter values possible
- Several other surrogate models proposed

(Ziegler-Nichols parameters for same model: $K_p = 0.9T/K\tau$, $K_i = 0.5T/K\tau^2$)

Example: Balloon Velocity Control

Equations of motion:

$$\delta\dot{T} + \frac{1}{\tau_1}\delta T = \delta q$$

$$\tau_2\dot{v} + v = a\delta T$$

Compute transfer function:

$$\left(s + \frac{1}{\tau_1}\right)\delta T = \delta q \quad (\tau_2 s + 1)v = a\delta T$$

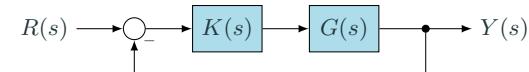
$$v = \frac{a}{(\tau_2 s + 1)(s + 1/\tau_1)}\delta q = \frac{a}{\tau_2 s^2 + (1 + \tau_2/\tau_1)s + 1/\tau_1}\delta q$$

Balloon parameters:

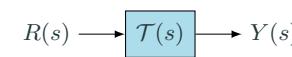
$$\tau_1 = 250 \text{ sec} \quad \tau_2 = 25 \text{ sec} \quad a = 0.3 \text{ m}/(\text{sec}\cdot^\circ\text{C})$$

To Matlab!

Model-matching



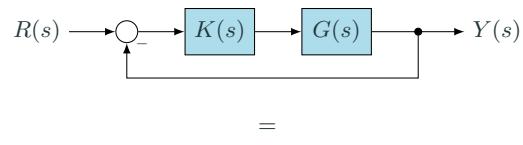
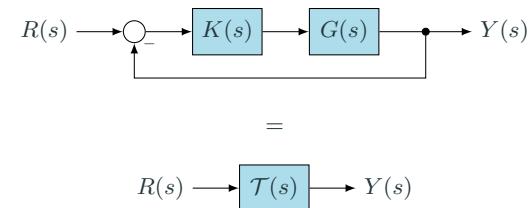
=



- The closed-loop system is a transfer function $\mathcal{T}(s)$ parameterized by $K(s)$
- Can we choose $K(s)$ to make the closed-loop system match a desired behaviour?

Model-Matching via PID

Model-matching



Compute $\mathcal{T}(s)$:

$$\begin{aligned} E(s) &= R(s) - Y(s) & Y(s) &= G(s)K(s)E(s) \\ \Rightarrow \frac{Y(s)}{R(s)} &= \frac{K(s)G(s)}{1 + K(s)G(s)} = \mathcal{T}(s) \end{aligned}$$

$$\begin{aligned} \frac{Y(s)}{R(s)} &= \frac{K(s)G(s)}{1 + K(s)G(s)} = \mathcal{T}(s) \\ \Rightarrow K(s) &= \frac{\mathcal{T}(s)}{G(s)(1 - \mathcal{T}(s))} \end{aligned}$$

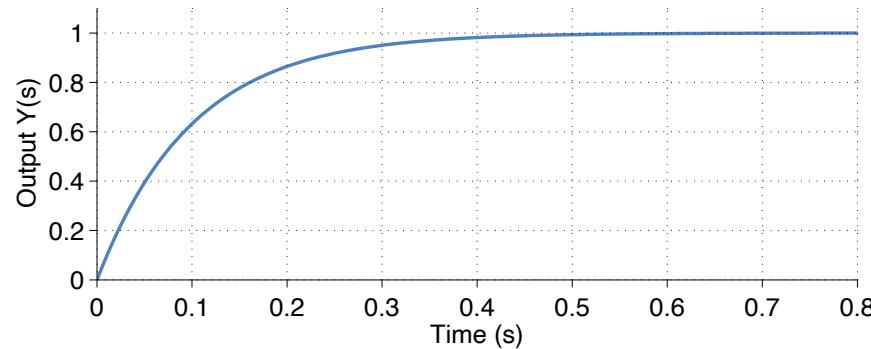
We can set $K(s)$ to give us the behaviour $\mathcal{T}(s)$.^a

^aThere are a lot of limitations to this in general, which we will discuss later.

Matching a First-Order Response

Suppose we want to match the system

$$\mathcal{T}(s) = \frac{1}{\tau_m s + 1}$$



Step response of first-order system with time-constant $\tau_m = 0.1$

- Doesn't oscillate
- Gain of one

52

Controlling a First-Order System

Suppose that the system we're trying to control is

$$G(s) = \frac{\gamma}{\tau s + 1}$$

A system that moves when you 'push' it and:

- Does not oscillate
- Stops moving after some amount of time

Compute the controller:

$$\begin{aligned} K(s) &= \frac{\mathcal{T}(s)}{G(s)(1 - \mathcal{T}(s))} = \frac{\frac{1}{\tau_m s + 1}}{\frac{\gamma}{\tau s + 1} \left(1 - \frac{1}{\tau_m s + 1}\right)} \\ &= \frac{\tau s + 1}{\gamma \tau_m s} \\ &= \frac{\tau}{\gamma \tau_m} \left(1 + \frac{1}{\tau s}\right) \end{aligned}$$

53

Controlling a First-Order System

$$K(s) = \frac{\tau}{\gamma \tau_m} \left(1 + \frac{1}{\tau s}\right)$$

This is a *PI* controller!

$$K_P = \frac{\tau}{\gamma \tau_m}$$

$$T_I = \tau$$

- We can choose how fast we want the closed-loop system to respond
- Simple 'tuning' procedure

54

First-Order System with Integral Action

Suppose we're controlling the system:

$$G(s) = \frac{\gamma}{\tau s + 1} \cdot \frac{1}{s}$$

A system that moves when you 'push' it and:

- Does not oscillate
- Continues moving at a constant speed forever

Compute the controller:

$$\begin{aligned} K(s) &= \frac{\mathcal{T}(s)}{G(s)(1 - \mathcal{T}(s))} = \frac{\frac{1}{\tau_m s + 1}}{\frac{\gamma}{s(\tau s + 1)} \left(1 - \frac{1}{\tau_m s + 1}\right)} \\ &= \frac{1}{\gamma \tau_m} (\tau s + 1) \end{aligned}$$

This is a *PD* controller

55

Second-Order System

Suppose we're controlling the system:

$$G(s) = \frac{\gamma}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

A system that moves when you 'push' it and:

- Does not oscillate
- Continues moving at a constant speed forever

Compute the controller:

$$K(s) = \frac{\tau_1 + \tau_2}{\gamma \tau_m} \left(1 + \frac{1}{(\tau_1 + \tau_2)s} + \frac{\tau_1 \tau_2}{\tau_1 + \tau_2} s \right)$$

This is a *PID* controller

56

Example - Balloon Velocity Control

Equations of motion:

$$\begin{aligned} \delta \dot{T} + \frac{1}{\tau_1} \delta T &= \delta q \\ \tau_2 \dot{v} + v &= a \delta T \end{aligned}$$

Spirit of Freedom

δT = deviation of the hot-air temperature from the equilibrium temperature where buoyant force equals weight

v = vertical velocity of the balloon

δq = deviation in the burner heating rate from the equilibrium rate

Balloon parameters:

$$\tau_1 = 250 \text{ sec} \quad \tau_2 = 25 \text{ sec} \quad a = 0.3 \text{ m}/(\text{sec} \cdot {}^\circ\text{C})$$

57

Example - Balloon Velocity Control

Equations of motion:

$$\begin{aligned} \delta \dot{T} + \frac{1}{\tau_1} \delta T &= \delta q \\ \tau_2 \dot{v} + v &= a \delta T \end{aligned}$$

Take Laplace transform:

$$\left. \begin{aligned} \delta T(s) \left(s + \frac{1}{\tau_1} \right) &= \delta Q(s) \\ V(s)(\tau_2 s + 1) &= a \delta T(s) \end{aligned} \right\} \rightarrow \frac{V(s)}{\delta Q(s)} = \frac{a \tau_1}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

Goal:

$$\mathcal{T}(s) = \frac{1}{\tau_m s + 1}$$

where $\tau_m = 10$ s.

58

Example - Balloon Velocity Control

Balloon parameters:

$$\tau_1 = 250 \text{ sec} \quad \tau_2 = 25 \text{ sec} \quad a = 0.3 \text{ m}/(\text{sec} \cdot {}^\circ\text{C})$$

Desired system parameters:

$$\tau_m = 10$$

Resulting PID controller:

$$K(s) = \frac{275}{0.3 \cdot 10} \left(1 + \frac{1}{275s} + \frac{6250}{275} s \right)$$

$$K_P = 92$$

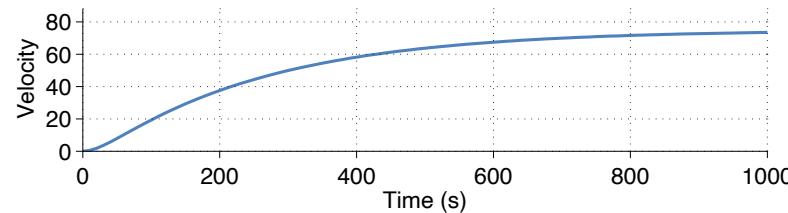
$$T_i = 3$$

$$T_d = 2083$$

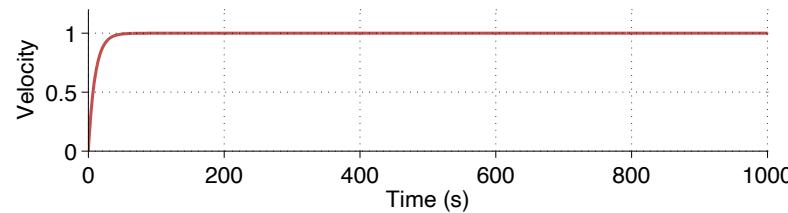
59

Example - Balloon Velocity Control

Open-loop behaviour



Closed-loop behaviour



Summary - Model Matching

The key idea:

- PID controller can make up to second order system behave as desired
- Many limitations on this statement:
 - Actuator limitations (speed, power, etc)
 - Physical constraints - may damage system if it's moved too fast, etc
- Many, many physical systems are approximately second order
 - Newton's law
 - Higher-order dynamics can often be ignored

60

61

What are 'Good' Models?

Second-order systems are extremely common
(e.g., mass/spring/damper + Newton's law)

$$\ddot{x}(t) + 2\zeta\omega_n\dot{x}(t) + \omega_n^2x(t) = \omega_n^2u(t)$$

Second Order Models

- ζ : Damping ratio
- ω_n : Natural frequency

The transfer function for this system is:

$$\frac{X(s)}{U(s)} = G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

What does the response of this system look like as a function of ζ and ω_n ?

62

Second Order Systems

$$\frac{X(s)}{U(s)} = G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

where we assume that $\omega_n > 0$ and $\zeta > 0$.

Response to a unit step input $U(s) = \frac{1}{s}$:

$$\begin{aligned} X(s) &= \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} U(s) \\ &= \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} \end{aligned}$$

Note that the system has no steady-state offset for all ζ, ω_n :

$$\begin{aligned} \lim_{s \rightarrow 0} sX(s) &= \lim_{s \rightarrow 0} s \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} \\ &= \lim_{s \rightarrow 0} \frac{\omega_n^2}{\omega_n^2} = 1 \end{aligned}$$

63

Step Response

The roots of the **characteristic polynomial** $s^2 + 2\zeta\omega_n s + \omega_n^2$ are:

$$p = \omega_n(-\zeta \pm \sqrt{\zeta^2 - 1})$$

Three cases depending on damping ratio ζ :

1. $\zeta > 1$ Overdamped
2. $\zeta < 1$ Underdamped
3. $\zeta = 1$ Critically damped

64

Case One: Overdamped

When $\zeta > 1$ we call the system **overdamped**

The system has two real, distinct poles p_1 and p_2

$$p_1 = \omega_n(-\zeta + \sqrt{\zeta^2 - 1}) \quad p_2 = \omega_n(-\zeta - \sqrt{\zeta^2 - 1})$$

The partial-fraction expansion is:

$$X(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} = \frac{a_1}{s - p_1} + \frac{a_2}{s - p_2} + \frac{1}{s}$$

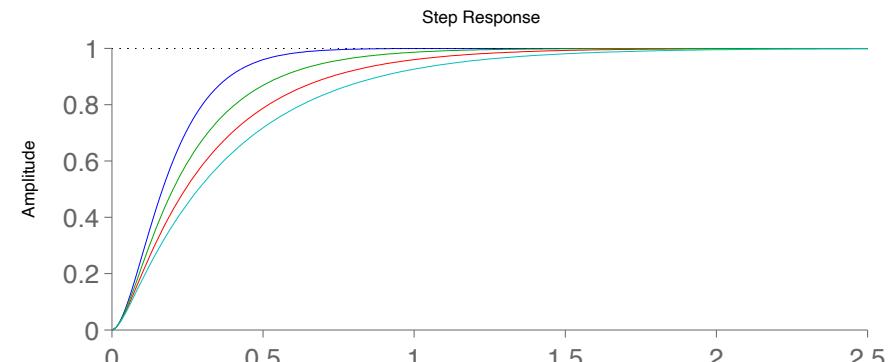
The inverse Laplace transform is:

$$x(t) = a_1 e^{p_1 t} + a_2 e^{p_2 t} + 1$$

Note that both p_1 and p_2 are negative, since $\zeta > 1$. Therefore both exponential terms decay.

65

Case One: Overdamped



Larger values of ζ have a slower response.

66

Case Two: Critically Damped

Assume $\zeta = 1$.

One repeated pole:

$$p_1 = p_2 = s = \omega_n(-\zeta \pm \sqrt{\zeta^2 - 1}) = \omega_n$$

The partial-fraction expansion is:

$$X(s) = \frac{\omega_n^2}{s(s + \omega_n)^2} = \frac{-1}{s + \omega_n} + \frac{-\omega_n}{(s + \omega_n)^2} + \frac{1}{s}$$

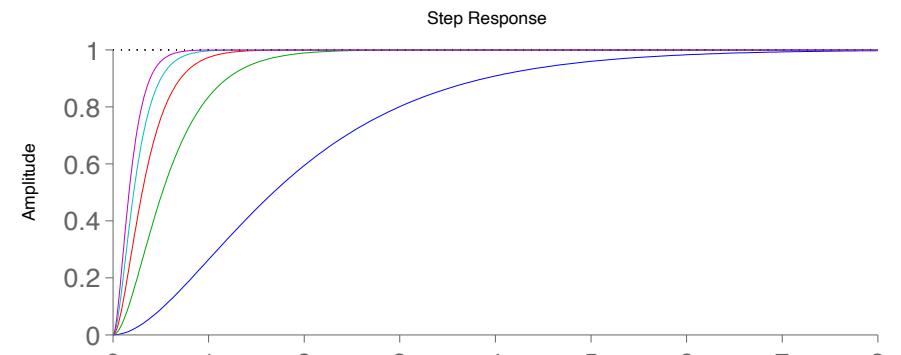
The inverse Laplace transform is:

$$-e^{-\omega_n t} - \omega_n t e^{-\omega_n t} + 1$$

Since $\omega_n > 0$, the exponential terms will always go to zero for all ω_n .

67

Case Two: Critically Damped



Larger values of ω_n have a faster response

68

Case Three: Underdamped

Assume $0 < \zeta < 1$

The poles are complex:

$$p = \omega_n(-\zeta \pm j\sqrt{1 - \zeta^2})$$

The inverse Laplace transform from the table is⁴

$$x(t) = 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \theta)$$

where $\theta = \cos^{-1} \zeta$

69

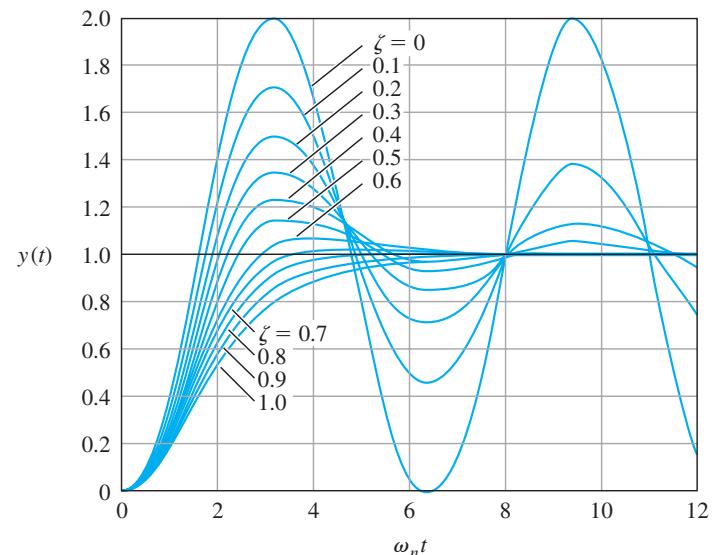
Case Three: Underdamped

- The signal oscillates, but decays to one
- The frequency of oscillation is the damped frequency $\omega_d := \omega_n \sqrt{1 - \zeta^2}$
- The signal decays at an exponential rate of $e^{-\sigma t}$, where $\sigma = \zeta \omega_n$

⁴Or you can derive from the frequency-shift property, and knowing the transform of the sine function.

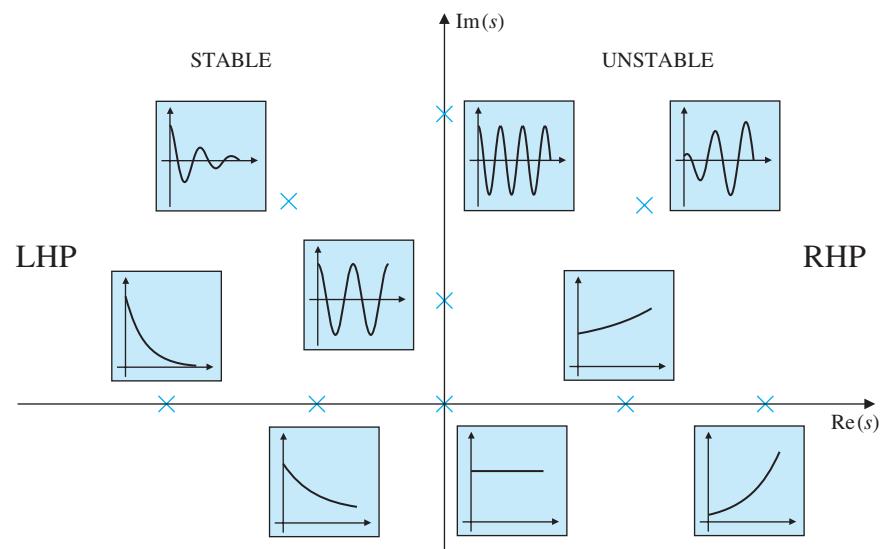
70

Case Three: Underdamped



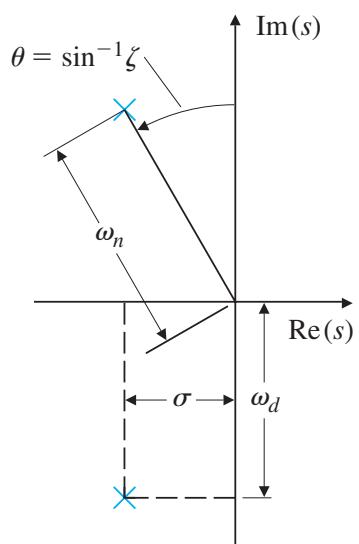
(b)

71



72

Visualization: The Pole-Zero Diagram



Pole location determines the behaviour of the system

- Magnitude of the real component: decay rate
 - Larger: faster decay
- Magnitude of the complex component: frequency of oscillation
 - Larger: Faster oscillation
- Magnitude of the pole: natural frequency
- Angle of the pole: $\sin^{-1} \zeta$

What are good choices for pole locations?

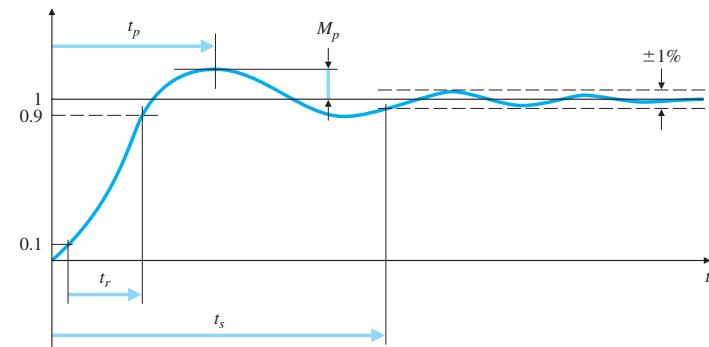
To Matlab! `pzLocations`

- Impact of ω_d
- Impact of σ
- Impact of ζ

73

74

Characterization of Second Order Systems



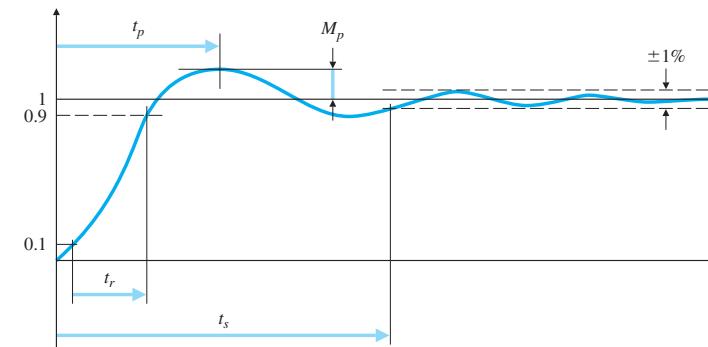
Peak time T_p . Time to get to the maximum value.

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d}$$

e.g., constraint: $T_p \leq 1.5 \Leftrightarrow \omega_d \geq \frac{\pi}{1.5}$

75

Characterization of Second Order Systems



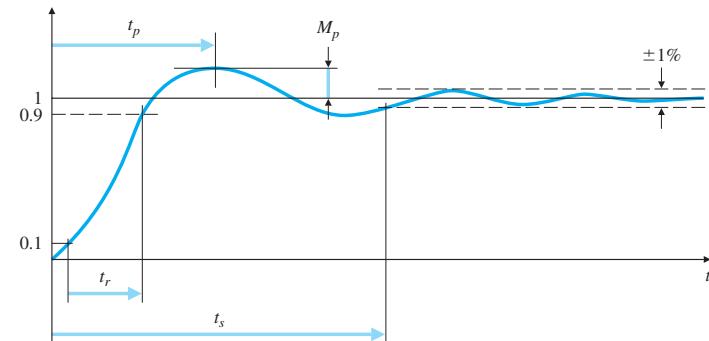
Percent overshoot $P.O.$.

$$P.O. := M_p \times 100\% = 100e^{-\zeta\pi/\sqrt{1-\zeta^2}}$$

e.g., constraint $M_p < 20\% \Leftrightarrow \zeta \geq -\frac{\ln(M_p)}{\sqrt{\ln(M_p)^2 + \pi^2}} = 0.45$

75

Characterization of Second Order Systems



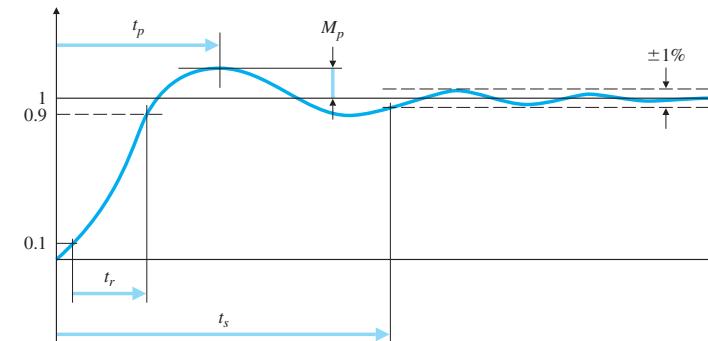
Settling time T_s . Time to settle to within δ percent of the steady-state value. e.g., if $\delta = 2\%$

$$T_s = \frac{-\log \delta}{\zeta \omega_n} = \frac{4}{\zeta \omega_n} = \frac{4}{\sigma}$$

e.g., constraint: $T_s \leq 4 \Leftrightarrow \sigma \geq \frac{4}{T_s} = 1$

75

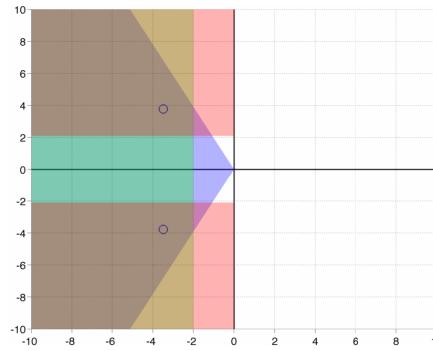
Characterization of Second Order Systems



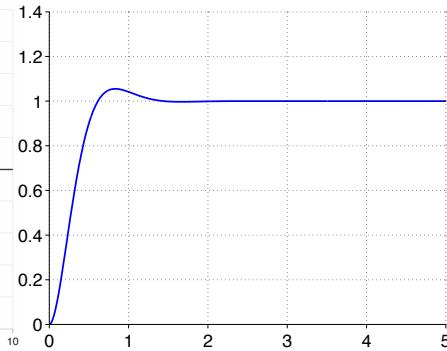
Rise time T_r . Time to get to 90% of final value from 10%

75

Characterization of Second Order Systems



- $T_p \leq 1.5$
- $M_p \leq 20\%$
- $T_s \leq 4s$



Second-Order Models: Summary

$$\ddot{x}(t) + 2\zeta\omega_n\dot{x}(t) + \omega_n^2 x(t) = \omega_n^2 u(t) \quad \frac{X(s)}{U(s)} = G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- ζ : Damping ratio
- ω_n : Natural frequency

- Many systems can be described with such a model.
- If your system is higher order, the general behaviour can often be described by the *dominant poles* (the most unstable ones - those closest to the imaginary axis)
- Common performance parameters can be set by appropriate selection of ω_n and ζ .

76

77

Second-Order Models: Summary

$$\ddot{x}(t) + 2\zeta\omega_n\dot{x}(t) + \omega_n^2 x(t) = \omega_n^2 u(t) \quad \frac{X(s)}{U(s)} = G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

- ζ : Damping ratio
- ω_n : Natural frequency

- Many systems can be described with such a model.
- If your system is higher order, the general behaviour can often be described by the *dominant poles* (the most unstable ones - those closest to the imaginary axis)
- Common performance parameters can be set by appropriate selection of ω_n and ζ .

How do we choose the PID weights so that we can meet specific criteria?

- Ziegler-Nichols tuning + manual adjustments (root locus)
- Model-matching
- Methods in later lectures (generally requires higher-order controllers)

Example

77

Example

Suppose that we have a system which takes a force, and outputs a position:

$$G(s) = \frac{V(s)}{U(s)} = \frac{21.53}{s^4 + 1.833s^3 + 70.28s^2 + 69.44s}$$

Control the position of this system using a PD controller such that:

- Over shoot is less than $M_p = 40\%$
- Settling time T_s is below 10s
- Peak-time T_p is below 4s

Note: The transfer function to velocity is

$$G'(s) = \frac{21.53}{s^3 + 1.833s^2 + 70.28s + 69.44}$$

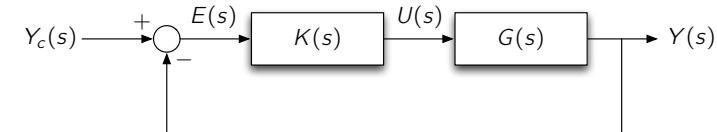
There is already an integrator here, so we're using a PD controller.

78

Method 1: Root-Locus Design

Goal: Choose K_p so that our closed-loop poles are in the right place.

Idea: Plot the poles of the closed-loop system as a function of the gain K_p



The closed-loop system is:

$$Y(s) = G(s)K(s)(R(s) - Y(s)) \quad \frac{Y(s)}{R(s)} = \frac{G(s)K(s)}{1 + G(s)K(s)}$$

Equivalently:

$$G(s) = \frac{A(s)}{B(s)} \quad K(s) = \frac{C(s)}{D(s)} \quad \Rightarrow \frac{Y(s)}{R(s)} = \frac{A(s)C(s)}{B(s)D(s) + A(s)C(s)}$$

79

Root-Locus Design

Our controller is:

$$K(s) = K_p(1 + T_d s)$$

Suppose we've chosen $T_d = 0.01$, and we're looking for a good K_p

Our closed-loop poles are given by the roots of the characteristic equation:

$$B(s)D(s) + A(s)C(s) = s^4 + 1.833s^3 + 70.28s^2 + 69.44s + K_p 21.53(1 + 0.01s) := f(s)$$

We can plot how the four poles of the closed-loop system move in response to changes in K_p . This is the root-locus diagram.

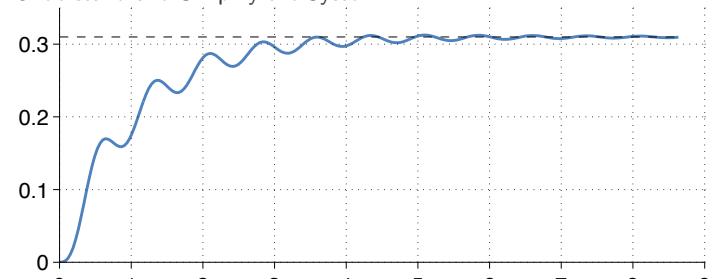
To Matlab! `sol_rlocus.m`

80

Method 2: Pole-Placement

Can we directly place the dominant poles of this system where we want?

Step 1: Understand and Simplify the System



$$G'(s) = \frac{21.53}{s^3 + 1.833s^2 + 70.28s + 69.44}$$

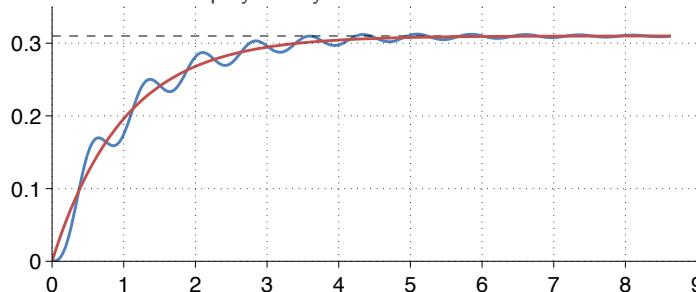
System is complex, but there is clearly a **dominant mode**

81

Method 2: Pole-Placement

Can we directly place the dominant poles of this system where we want?

Step 1: Understand and Simplify the System



Much simpler system that captures the main properties

$$P(s) = \frac{0.31}{s+1} \approx G'(s)$$

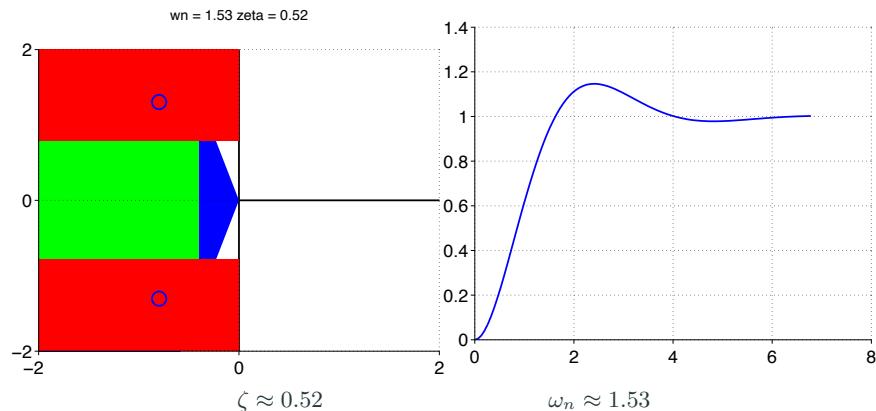
Very common to neglect the 'higher order dynamics'

81

Target System

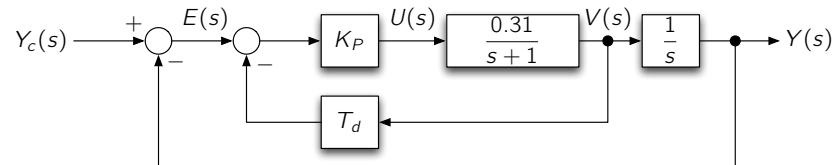
Compute a second order system that satisfies the specified conditions:

- Over shoot is less than $M_P = 40\%$
- Settling time T_s is below 10s
- Peak-time T_p is below 4s



82

PD Control Structure



Closed-loop transfer function:

$$Y(s) = \frac{1}{s} \frac{0.31}{s+1} K_P (E(s) - T_d s Y(s)) \quad E(s) = R(s) - Y(s)$$

$$\frac{Y(s)}{R(s)} = \frac{0.31 K_p}{s^2 + (1 + 0.31 K_p T_d)s + 0.31 K_p}$$

Two parameters to choose, and two parameters to set

\therefore we can choose any response we like!

83

PD Control Structure

$$\frac{Y(s)}{R(s)} = \frac{0.31 K_p}{s^2 + (1 + 0.31 K_p T_d)s + 0.31 K_p}$$

$$= \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Desired response

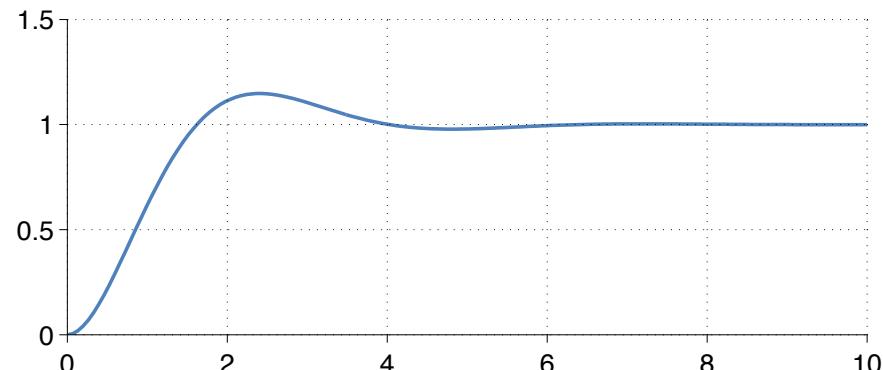
where $\zeta \approx 0.52$, $\omega_n \approx 1.53$

$$K_p = \frac{\omega_n^2}{0.31} = 7.55$$

$$T_d = \frac{2\zeta\omega_n - 1}{0.31 K_p} = 0.25$$

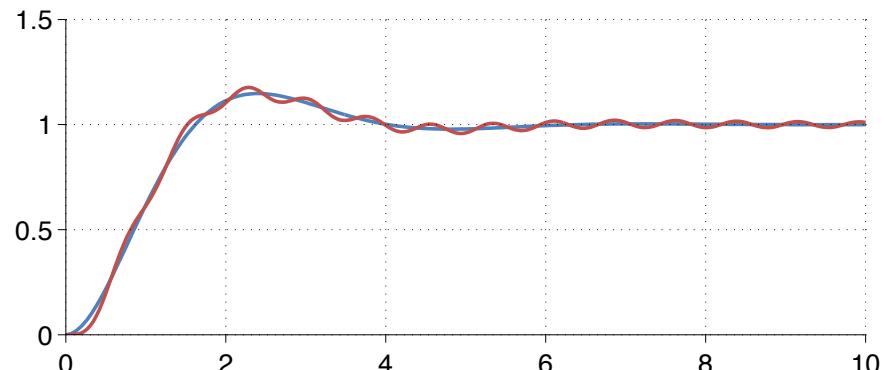
84

Pole Placement Result



Closed-loop response of simplified system

Pole Placement Result



Real closed-loop system with controller

85

85

Input Constraints

All real systems have **input constraints**

All the controllers you've seen assume that they do not

This is a problem!

Anti-Windup

Consider the simple system:

$$G(s) = \frac{100}{s + 50}$$

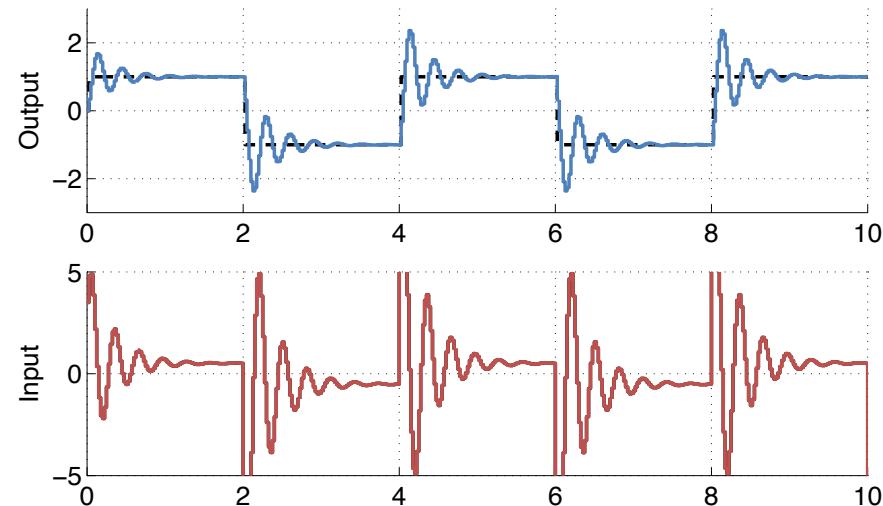
with a PI controller

$$K(s) = K_p \left(1 + \frac{1}{T_i s} \right)$$

with $K_p = 3.5$ and $T_i = 0.01$.

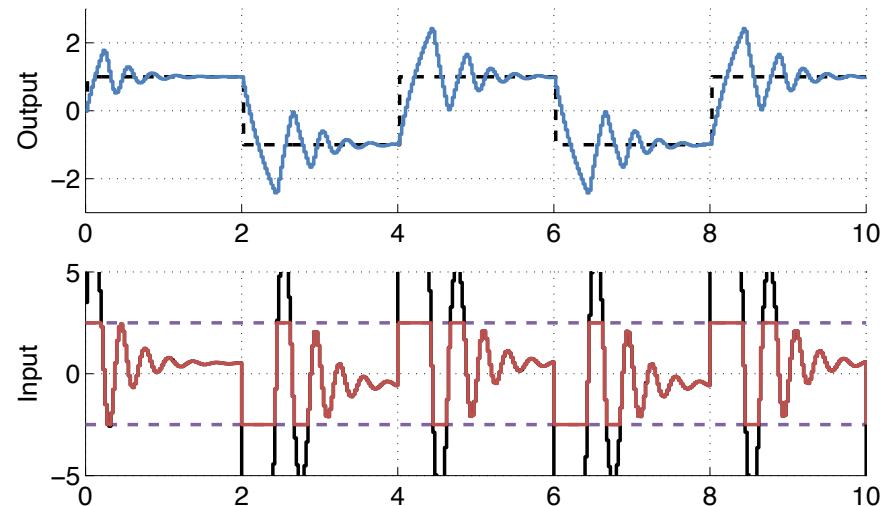
86

Example : Impact of Constraints



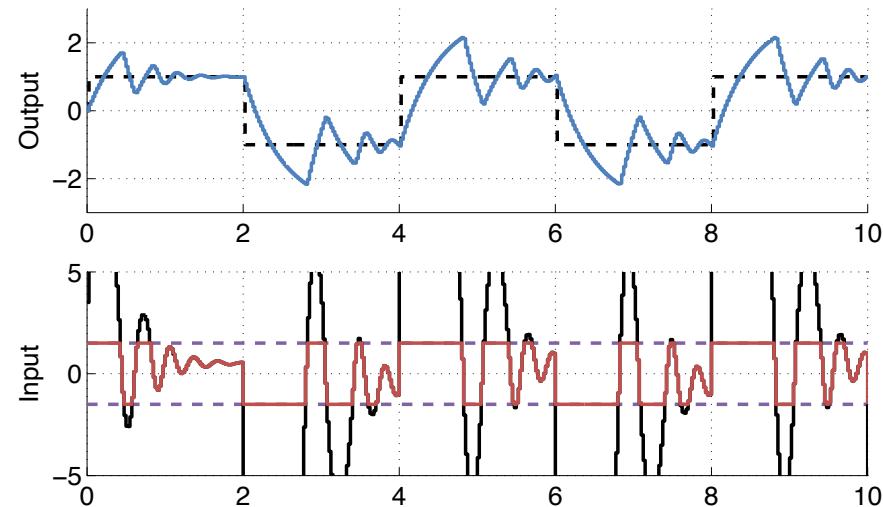
87

Example : Impact of Constraints



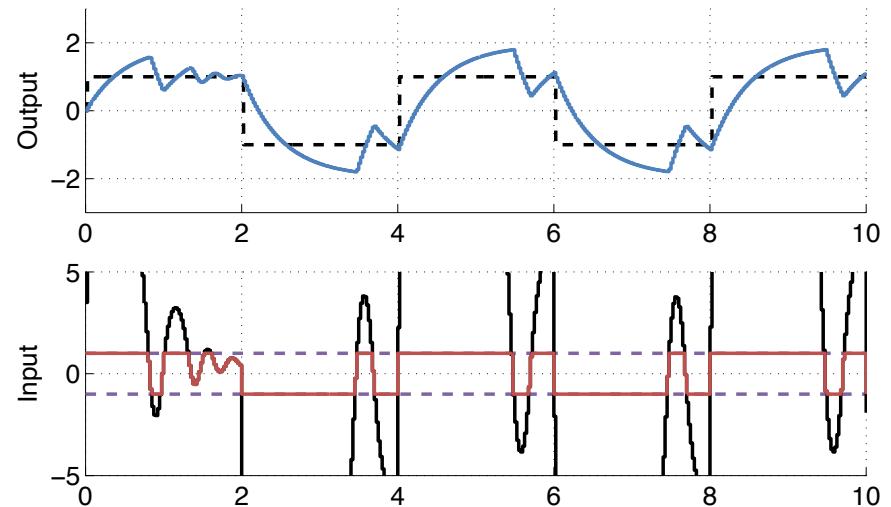
87

Example : Impact of Constraints



87

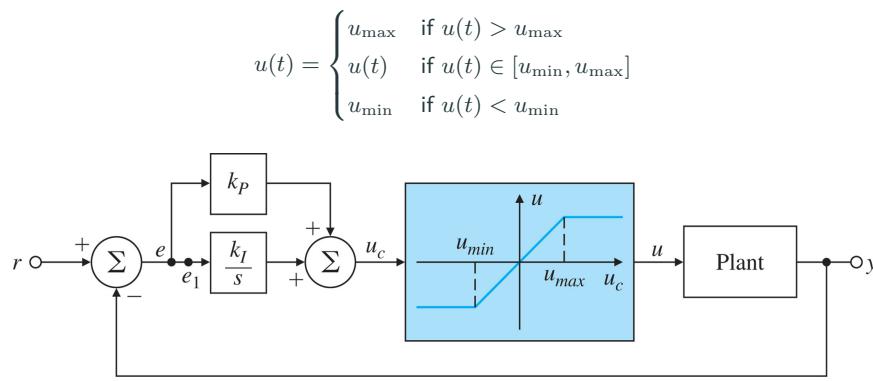
Example : Impact of Constraints



87

Saturation

No matter what we do, the input will satisfy the condition called **saturation**.⁵



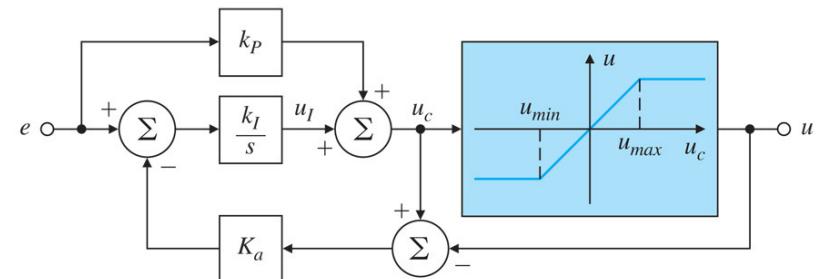
⁵We've written the saturation here as a symmetric term. It is also possible to have asymmetric saturation.

88

Anti-Windup

Preventing the integrator from growing or 'winding up' is called **anti-windup**

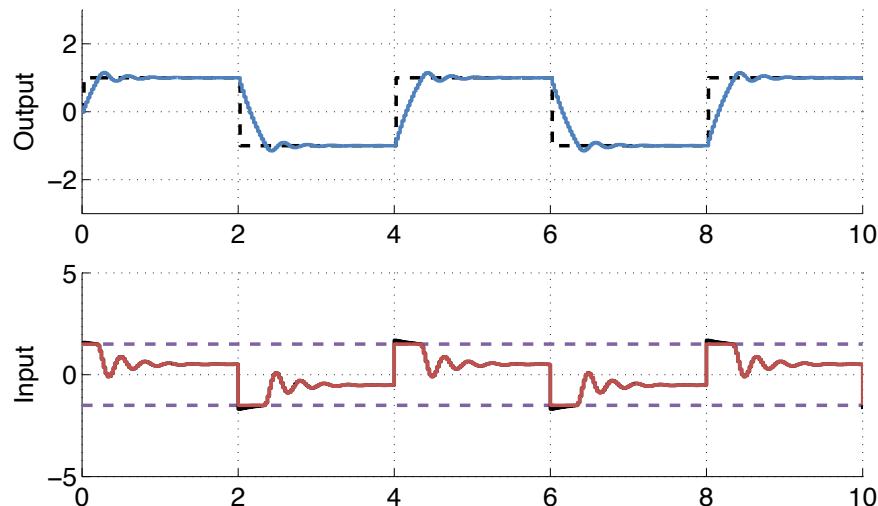
Idea: Detect when saturation is active, and turn off the integrator



- Only impacts the system when constraints are active
- Relatively simple to tune
- Can be implemented in continuous-time (traditional reason)

89

Example : Impact of Constraints



90

PID - Summary

PID controllers are extremely useful:

- Used in the vast majority of simple systems
- Often the 'lowest-level' of control. More complex control built on top

A great deal of good literature available on tuning commercial PID controllers

Proportional	▪ Sets the 'aggressiveness' of your system
Integral	▪ Added to ensure zero steady-state offset
Derivative	▪ Increase the damping of the system - improve stability

Impact of PID terms:

PID Gain	Percent Overshoot	Settling Time	Steady-State Error
Increasing K_P	Increases	Minimal impact	Decreases
Increasing K_I	Increases	Increases	Zero steady-state error
Increasing K_d	Decreases	Decreases	No impact

91